
Inform ATTACK - Manual
Version 0.1

Victor Gijsbers (victor@lilith.cc)

August 21, 2010

2

Contents

1 Introduction 5
1.1 IF and combat . 5
1.2 Design principles . 7
1.3 Some features . 8
1.4 How to use this document . 9
1.5 License . 9

2 ATTACK: detailed overview 11
2.1 Preliminaries . 11

2.1.1 Inclusions and use statements 11
2.1.2 Numbers on and off . 11
2.1.3 Some say-phrases . 12
2.1.4 Acting fast . 12

2.2 The basic statistics of actors 12
2.2.1 Health . 12
2.2.2 Killed / alive . 14
2.2.3 Melee and defence . 14
2.2.4 Factions . 15

2.3 The combat round . 16
2.3.1 Combat states . 16
2.3.2 Initiative . 16
2.3.3 Setting up the combat order 17
2.3.4 Main combat round routines 18
2.3.5 Handling the combat round 19
2.3.6 Having a reaction . 20
2.3.7 Running the combat 20

2.4 Striking a blow . 21
2.4.1 A few preliminaries . 21
2.4.2 The big routine . 22
2.4.3 The seventeen entry points in detail 24
2.4.4 Which entry points should I use? 31

3

4 CONTENTS

2.5 Standard combat actions . 32
2.5.1 Waiting . 32
2.5.2 Attacking . 32
2.5.3 Concentrating . 33
2.5.4 Parrying . 35
2.5.5 Dodging . 36

2.6 Artificial Intelligence . 37
2.6.1 Preliminaries . 37
2.6.2 Standard attacker AI 37
2.6.3 Three steps: person, weapon, action 37
2.6.4 First step: choosing a person 38
2.6.5 Second step: choosing a weapon 40
2.6.6 Third step: choosing an action 41
2.6.7 Chance to win rules . 44

2.7 Weapons . 45
2.7.1 The weapon kind . 45
2.7.2 Readying . 46
2.7.3 Natural weapons . 47

2.8 Plug-ins . 47
2.8.1 Reloadable weapons 48
2.8.2 Tension . 51

3 Examples and recipes 53
3.1 Worked example: a simple dungeon 53

3.1.1 First blood . 53
3.1.2 Custom weapons . 53
3.1.3 Simple prose . 54
3.1.4 Killing the player . 57
3.1.5 Movement and retreat 58
3.1.6 Simple AI tweaks . 61
3.1.7 Special ability: shout 62
3.1.8 Healing the player . 63
3.1.9 A blade in the dark . 66
3.1.10 Monster with special abilities 71
3.1.11 Victory! . 74
3.1.12 Test commands . 75
3.1.13 Save and Undo . 75

3.2 Further recipes . 77

Chapter 1

Introduction

1.1 IF and combat

Welcome to the Inform Advanced Turn-based TActical Combat Kit, abbre-
viated as Inform ATTACK.1 ATTACK is a piece of software written in the
Inform 7 interactive fiction programming language, to be used by authors
who wish to incorporate tactical turn-based combat in their interactive fic-
tion. This is not a stand-alone game. If you are not the author or prospective
author of a piece of interactive fiction, this document will be of little use to
you.

For a genre that can trace it roots back to Dungeons & Dragons,2 interac-
tive fiction has made curiously little use of the gameplay options provided by
tactical combat – options that have been developed and perfected in differ-
ent ways in many genres of computer games, board games and pen & paper
roleplaying games. The heritage of the early interactive fiction is of course
evident in non-text games like Nethack and in many text-based MUDs; but
these are not exactly what we would nowadays call interactive fiction (in the
narrower sense). I think that the prevailing attitude among IF authors has
been nicely summed up in a recent article by Jimmy Maher:

Virtually all attempts at creating a satisfying tactical combat
engine for IF, for instance, have met with failure, for without a
mechanism for knowing where combatants stand in relation to

1One of my friends immediately complained that the acronym was not recursive. So, as
a special treat for those of you who not only know what GNU/HURD stands for but also
chuckle about it: you should read “ATTACK” as an acronym for “ADVANCED: Turn-
based TActical Combat Kit, and “ADVANCED” as an acronym for “ATTACK: D&d
Variant for Adaptive Narratives with Computer-Enhanced Dm”.

2See the early history of interactive fiction in Jimmy Maher’s Let’s tell a story together :
http://maher.filfre.net/if-book/if-2.htm.

5

6 CHAPTER 1. INTRODUCTION

one another the engine can allow for little tactical skill from the
player. Such systems thus end up feeling like little more than a
series of arbitrary die rolls. It has in fact become something of a
truism among many players that simulated combat in IF simply
cannot work, and that its presence is a justifiable reason not to
even attempt a given game.3

There are several reasons why there has been little enthusiasm for tactical
combat among modern IF authors. As far as I can judge, the most important
reasons are these:

• Because of the actual games that have used randomised combat, people
have come to loath it as the intrusion of pure chance into what is oth-
erwise a skill-based game. That is, “randomised combat” has become
synonymous with “combat where the outcome is purely random” – the
typical combat game being one where you type “attack” twenty times
in a row, hoping to survive. Such combat is, of course, precisly not
tactical; but what is in fact a design flaw in such games has come to
be perceived as a necessary aspect of randomised combat as such.

• In addition, it has often been remarked that the UNDO and SAVE
commands will doom all tactical combat: for either the player can just
undo every bad roll of the dice, or the author must deprive the player
of two conveniences which have become essential to an enjoyable IF
experience. But the idea that the player would resent having no or only
restricted access to UNDO and SAVE seems to me unfounded. Indeed,
what makes Nethack such a great game is precisely this restriction. It is
not clear that a suitable compromise between tension and convenience
cannot be found.

• Finally, interactive fiction authors strive for good prose; and the au-
tomatically generated prose of a combat system is thought to be in-
compatible with this aim. This is an excellent argument. It raises the
question whether IF, as a medium, is suited to tactical combat. After
all, by choosing IF instead of a graphical medium, one loses certain
possibilities – many ways of using geography, for instance. What do
we get in return? Two things: prose, and the quasi-unlimited input
that a creative player can think up. But if our tactical combat system
accepts only a strictly limited range of actions, and if it only spews out

3Jimmy Maher, “Lines and Rectangles: Navigating within a Textual Virtual World”,
http://www.sparkynet.com/spag/backissues/spag58.html#navigating. (As the con-
clusion of the passage makes clear, “virtually all” should be read as “all”.)

1.2. DESIGN PRINCIPLES 7

sentences like “You hit the goblin for 4 damage.”, it is definitely not
playing to the strenghts of the medium. Although the resulting game
might still be fun, one has to wonder why it was written as a piece of
interactive fiction.

In my estimation all these problems can be solved. I hope that Inform
ATTACK can be a significant part of the solution, and will make it possible
to combine interactive fiction and tactical combat in a fruitful way.

1.2 Design principles

Inform ATTACK has been designed on three principles: combat should be
tactical; the system should be easily extensible and customisable; and it
should be possible to create interesting prose based on what happens during
combat.

1. Combat should be tactical. Tactical combat is combat where the
player can make different decisions, where these decisions significantly
affect the flow and outcome of the battle, where smart thinking and
courage allow the player to make better decisions, but where it is either
hard or impossible to find the best strategy. If any of these conditions
is not met, combat will be boring.

The Inform ATTACK basic combat system already comes with the
tactical options, and interplay between these options, to fulfill these
conditions. The decisions when to concentrate, when to defend and
when to attack are very significant, highly dependent on the circum-
stances of the moment, but not easy to make even for someone who
knows the system well. The initiative system adds another layer of
complexity that the wise will be able to use to their advantage.

A game with more than a handful of fights will certainly want to extend
the basic system and add new tactical options, new circumstances, new
enemy behaviour, or new items. ATTACK’s system is rich enough to
make it easy to add such options and ensure that they form a set of
live tactical options, rather than a hierarchy of worse and better pos-
sibilities. As an example: any system where weapons have only one
property, a chance to hit for instance, will have a simple hierarchy of
better weapons (with greater chance to hit) and worse weapons (with
lower chance to hit). ATTACK gives weapons many standard proper-
ties, and in addition makes it very easy to add new rules governing the
behaviour of any single weapon or class of weapons.

8 CHAPTER 1. INTRODUCTION

2. The system should be easily extendible and customisable. AT-
TACK has been designed from the ground up with extensibility and
customisablity in mind. Almost the entire combat system is built up
out of rulebooks, which are then filled with named rules. It is easy to
add rules, replace rules, and remove rules, without having to edit the
code of the basic system itself. This makes it possible to define new
characters, actions, weapons, circumstances, and so forth, in a com-
pletely local manner: you can have all the code pertaining to any of
these things in one place, grouped together, even though these rules
are called in very different circumstances.

3. Interesting prose generation should be possible. Prose genera-
tion is governed by a number of rulebooks, which can (and should) be
customised and extended at will, and are limited only by how much
time the author is willing to invest in writing custom prose for any
particular set of circumstances.

In addition, ATTACK comes with a ‘numbers on’ and a ‘numbers off’
mode, which will turn on and off the display of numerical combat cal-
culations based on the preferences of the player or author. It is possible
to allow the player to look under the hood at all the modifiers, or to
have the game generate straight prose without any numbers intervening
at all.

1.3 Some features

• Get started in minutes: setting up a basic combat situation will only
take a few lines of code, and Inform ATTACK comes with enough
complexity to make such a fight interesting in its own right. (Though
you will almost certainly want to heavily customise both the system
and the prose.)

• An advanced initiative system ensures that there is no static order
in which the actors take their turns, which makes the combat feel more
dynamic and less predictable. Getting more turns than your enemies, or
getting them at the most opportune moments, is an important tactical
goal.

• An act/react cycle, where the player gets to react against attacks
initiated against her by a defensive move or some other non-aggressive
action, adds to the excitement. It also allows the player to either play
it safe, or take big risks for big rewards.

1.4. HOW TO USE THIS DOCUMENT 9

• Six built-in actions – attacking, parrying, dodging, concentrating,
readying and reloading – provide a basic set of tactical choices that
make for interesting combat even before the author adds new possibil-
ities.

• Artificial intelligence allows NPCs to choose their enemies, their
weapons and their actions in a smart and not entirely predictable way,
based on the current circumstances and whatever preferences the au-
thor adds.

• A system of factions allows you to easily customise who should attack
who, and you can change allegiances on the fly.

• The class of weapons comes with many interesting properties that
allow you to easily define weapons with very different behaviours –
from swords and daggers to crossbows and laser guns.

1.4 How to use this document

If you want to understand ATTACK completely, you should read chapter 2,
preferably with ATTACK’s source code next to it. But if you want to see
of what it is capable and want to get a feel for how to do things, chapter
3 might be a better place to start – it offers examples and recipes for some
common (and some uncommon) scenarios.

1.5 License

ATTACK is licensed under the General Public License (GPL) version 3 or any
higer version. See http://www.gnu.org/licenses/gpl.html. The GPL is
a free software license; you can use my source code for whatever purpose you
wish as long as you then publicly release your own source code under the
very same license.

However, because many authors of interactive fiction prefer not to make
their works free software, I hereby grant two special dispensations:

1. You can use Inform ATTACK in your own program as long as you
release the compiled version of this this program (that is, the game)
for free. Here “for free” must at least include allowing your game to be
hosted by the IF Archive4 or a credible successor. If you so release your
game, you do not have to publish your source code under the GPL.

4http://www.ifarchive.org/

10 CHAPTER 1. INTRODUCTION

2. If you do choose to release a derivative work under the GPL, you are
allowed to add these exact same dispensations to its license.

What does this mean? Well, it basically means that if you release your
games in the way 99% of all IF authors do, you can use ATTACK without
worrying about it any further. If you have any questions, or if you need to
use a different license, email me at victor@lilith.cc.5

The manual you are reading right now is licensed under the GNU Free
Documentation License. See http://www.gnu.org/copyleft/fdl.html.

5Why, you may ask, is ATTACK not licensed under the Creative Commons Attribution
3.0 license, like all the extensions on the Inform 7 website? Two reasons. One, I’m not
going to let anyone profit from my code if that person isn’t planning on letting us all
profit from his work in return. Two, the Creative Commons Attribution 3.0 license is not
a software license. I’m not a lawyer, but it seems almost certain to me that if you stick it
on your source code, it only covers that source code, not games compiled from that source
code.

Chapter 2

ATTACK: detailed overview

2.1 Preliminaries

2.1.1 Inclusions and use statements

ATTACK needs one extension: the built-in extension Plurality by Emily
Short, for printing plurals right.

We also define a very short Inform 6 routine which decides which number
is the current row ; ATTACK uses this internally, but you don’t have to worry
about it.

2.1.2 Numbers on and off

There are two different ways in which ATTACK can be used: with all the
combat-related mathematics hidden under the hood, or with it all out in the
open. The first will be preferred by authors and players who don’t want any
calculations to interrupt the prose of the game; the second will be preferred
by players who wish to understand and use the details of the combat system.

To track which mode is preferred, ATTACK defines a truth state called
the numbers boolean. This is usually true, but can of course be changed
by the author. ATTACK also defines two actions that the player can use
to change the numbers boolean: switching the numbers off, triggered by a
command of “numbers off”, will run the standard switching the numbers off
rule and will make the numbers boolean false; switching the numbers on,
triggered by a command of “numbers on”, will run the standard switching
the numbers on rule and will make the numbers boolean true.

To get a feeling for the difference between these two modes, simply try
out these commands in the ATTACK test game.

11

12 CHAPTER 2. ATTACK: DETAILED OVERVIEW

2.1.3 Some say-phrases

Next, we define several say-phrases, all of which are needed to change the
standard printed name of the player from “yourself” to “you”. After all, we
don’t want to see stuff like: “Yourself hits John.”

This may seem to be easy enough, since we just declare a rule for printing
the name of yourself, the standard yourself to you rule, and make it print
“you”. But this will have the effect of printing “you” in all lowercase let-
ters even at the beginning of a sentence. So we define a number of further
say-phrases that will help us avoid this problem. For example, any prose in
your game that starts a sentence with the name of the current global attacker
should not start with “[Global attacker]”, but with “[CAP-attacker]”. Sim-
ilarly, we have “[CAP-defender]” for the global defender, “[CAP-actor]” for
the global actor, “[CAP-noun]” for the noun and “[CAP-second noun]” for
the second noun.

2.1.4 Acting fast

As a final preliminary, we define acting fast. Any action that should not cost
a combat turn ought to be defined as acting fast, e.g.:

Example. If we want singing to take no time, we just add the
following:

Singing is acting fast.

The actions that ATTACK standardly designates as fast are: examining
something, taking inventory, smelling, smelling something, looking, looking
under, listening, listening to something, thinking, and all the standard out of
world actions. So the player can take inventory, look and examine as much
as he likes without being killed by whatever nasty he is currently facing.

We also define the phrase take no time. You can call this whenever the
current action should count as acting fast; for instance, if an action of the
player is stopped by a check rule.

2.2 The basic statistics of actors

2.2.1 Health

Every person has a number called health, which is usually 10. It indicates
how far the person is from dying.

2.2. THE BASIC STATISTICS OF ACTORS 13

A person has a number called permanent health, which can be used (for
instance) to heal the person back to his original amount of health. At the
beginning of the game (when play begins), a rule called the set permanent
health to initial health rule sets the permanent health of every person equal
to the health of that person. If you want to have persons whose permanent
health is different from their initial health, you must either change one of
these values after this rule has run, or you must unlist this rule.

For your convenience, ATTACK provides three phrases for healing per-
sons:

Restore the health of Jack.

will set the health of Jack to the permanent health of Jack (even if his current
health higher).

Fully heal Jack.

will set the health of Jack to the permanent health of Jack, but not if his
current health is higher.

Heal Jack for 4 health.

will raise Jack’s health by 4, or up to his permanent health, whichever is
lower. In addition, it will store the amount of health given to Jack in the
global numerical variable healed amount, where you can access and print it,
if you wish. (It will be overwritten by the next healing.)

Example. Jack’s permanent health is 15, but through some
means his health has been raised to 20. Now

Restore the health of Jack.

will reset Jack’s health to 15, while

Fully heal Jack.

will do nothing.

Example. Jack’s permanent health is 15, but his current health
is 11. Now

Heal Jack for 7 health.

will heal him for 4 health, because it cannot heal him above his
permanent health. The number 4 is stored in the global variable
healed amount.

14 CHAPTER 2. ATTACK: DETAILED OVERVIEW

2.2.2 Killed / alive

If at any time the health of the actor becomes 0 or less, that person will be
killed ; otherwise, he is alive.

ATTACK does not handle everything you need to do to integrate dead
bodies into your game; for instance, in the presence of a killed goblin “goblin,
go north” will lead to the somewhat unlikely “The dead goblin has better
things to do.”. Writing rules to handle these cases cannot be done in AT-
TACK, because the prose you’ll want will be different for each game.

However we do set up a couple of things that almost every author will
want to use. We have two rules, the improper print dead property rule and
the proper print dead property rule, that print “dead” before the name of a
killed improper-named person or “’s body/bodies” after the name of a killed
proper-named person. Thus, “You see John, Queen and a goblin.” becomes
“You see John’s body, Queen’s bodies and a dead goblin.”. These rules can be
circumvented by setting the printing dead property to false. ATTACK defines
two say-phrases which set this truth state to false and true respectively: [no
dead property] and [dead property]. The recommended use like this:

This is some rule:

say "You kill [no dead property][the noun][dead property].".

and in fact, ATTACK uses this scheme to ensure that the player will not see
“You kill the dead goblin.” after killing the goblin – which would be some-
thing of an anti-climax. We also ensure that the phrases “dead”, “killed”,
“body”, “body of”, “bodies”, “bodies of” and “corpse” refer to killed people,
and the phrases “alive”, “live” and “living” to alive people.1

We replace the can’t take people’s possenssion rule by the cant take living
peoples possessions rule – looting dead bodies is a staple of the genre. In
order to make looting more feasible, we also add an after examining a killed
person rule called the give list of possession on dead person rule, which prints
“On the body/bodies of [the noun] you also see”, and then a list of items
carried.

2.2.3 Melee and defence

Every person has two basic combat statistics that will, in the absence of more
interesting things, determine the probability of hitting. These statsitics are

1Unfortunately, “x John’s body” will not be recognised, since “John’s” is not recog-
nised as refering to John. I’d like to solve this with “Understand “[something related by
equality]’s” as a person.”, but that code leads to a fatal error.

2.2. THE BASIC STATISTICS OF ACTORS 15

two numbers called melee and defence. The usual values are melee 0 and
defence 7.

To score a hit, the attacker’s melee + a random number between 1 and 10
must exceed (be strictly higher than) the defender’s defence – though both
sides of this equation can be modified in various ways. This means that a
standard attacker has a 30% chance of hitting a standard defender. It also
means that even a small defence bonus can dramatically decrease the chance
of hitting, or even lower it to zero; but the basic system’s use of concentration
and tension has been designed to fit this.

When a hit is scored, the basic damage done is a random number between
1 and the damage die of the weapon used by the attacker (a number defined
in the section on weapons; see 2.7).

Example. To create a person whose combat statistics are slightly
better than normal, we might type the following.

Jack is a person.

The health of Jack is 15.

The melee of Jack is 2.

The defence of Jack is 8.

2.2.4 Factions

Faction is a kind of value, with the standard values friendly, passive and
hostile. Every person has a faction; the player is normally friendly, other
persons are normally passive. More factions can be added by the author,
and the factions of people can be changed on the fly.

Factions can be related to each other by the hating relation. In standard
ATTACK, friendly hates hostile, and hostile hates friendly. Whether or not
factions hate each other can be changed on the fly as well, using a statement
like “now neutral hates hostile”.

Person A will only attack person B if the faction of A hates the faction
of B. So in standard ATTACK, friendly persons will attack hostile persons,
hostile persons will attack friendly persons, and all other combinations won’t
fight. Passive is a special faction: passive people will never get a turn during
a fight, not even when their faction is made to hate some other faction. (But
if the passive faction is hated by some other faction, that other faction will
attack the poor defenseless passives!)

Example 3. The only thing we need to add to the previous
example to make Jack an opponent to our player character is:

16 CHAPTER 2. ATTACK: DETAILED OVERVIEW

Jack is hostile.

Finally, this section defines a routine to decide whether hate is present.
This routine returns yes if at least one alive not passive person enclosed by
the location has a faction that hates the faction of at least one alive person
enclosed by the location; otherwise, it decides no. Based on this decision, we
either do or do not run the ATTACK combat round machinery.

2.3 The combat round

Whose turn is it? Which people get to react to the action just taken? These
are the questions answered by the routines in this part of ATTACK.

2.3.1 Combat states

Combat state is a kind of value. The values are: Normal, Act, React and
Reacted. Every person has a combat state, which is usually Normal.

Every person also has a person variable attached to him called the pro-
voker, and an action-name called the provocation.

The person who can act this round will be given the Act combat state.
After the Act(ive) person has chosen his action, everyone who is allowed to
react to his action (in the basic rules, this will only be the noun of a possible
attack action) will be given the React combat state. The provoker of each of
these persons will be set to the current Act(ive) person, and the provocation
to the action name of the action taken. (So, if A attacks B, the combat state
of B is set to React; the provoker of B is set to A; and the provocation of B
is set to the attack action. The provoker and the provocation can be used to
decide on an appropriate reaction.)

The game then calls on everyone with the React combat state, changing
their state to Reacted after they have declared an action. At the beginning
of the next combat round, all combat states are reset to Normal.

Many rules check the combat state of a person. For instance, aggressive
actions are only allowed to persons with the Act combat state.

2.3.2 Initiative

A person has a number called the inititiative. The initiative of a person is
usually 0.

Every round, the person with the highest initiative is the one who will be
able to act. If two or more people have the same initiative, ATTACK will
decide randomly which of them can act.

2.3. THE COMBAT ROUND 17

The initiative rules rulebook is called at the beginning of each combat
round, just before the decision is made who can act. Not all rules concerning
initiative should be in this rulebook, just the ones that should be called at
the beginning of each combat round. (One example of a rule that should be
called at other moments will be given shortly.)

The standard system fills the initiative rulebook with three rules, all of
which apply to all alive persons enclosed by the location:

1. A first initiative rule called the no low initiative trap rule sets any
initiative lower than -2 to -2. This ensures that nobody can fall too far
down in the initiative order.

2. An initiative rule called the increase initiative every round rule in-
creases everyone’s initiative by 2. (“But that doesn’t change the ini-
tiative order!”, you may object. It does in combination with the fact
that after attacking, your initiative is reset to 0.)

3. An initiative rule called the random initiative rule adds between 0 and
2 initiative to everyone’s initiative (randomly calculated for everyone
separately), to add some randomness to the combat order.

One additional rule concerned with initiative is defined in this part of
ATTACK, namely an aftereffects rule (a rulebook discussed in subsection
2.4.3) called the modify initiative based on combat results rule. It decreases
the initiative of the defender by 2 if he was damaged, and that of the attacker
by 2 if he failed to damage the defender. This reflects the fact that a successful
attack puts you at an advantage, whereas an unsuccessful attack puts you at
a disadvantage.

2.3.3 Setting up the combat order

The combat order is decided in the set up the combat order routine by setting
up a table called the Table of Combat Order which contains all alive not
passive persons enclosed by the location (the Combatant entry) and their
initiative (the Move Order entry). This table is first sorted in random order
and then sorted in reverse intiative order – with the result that a random
person with the highest initiative is in the first row. (Only the first row will
ever be used; for the next round the entire tabel is constructed anew, since
everything may have changed.)

The Table of Combat Order has 50 rows. If your game will ever have
more than 50 alive not passive persons in one location, you need to extend
this. (And perhaps rethink your design!)

18 CHAPTER 2. ATTACK: DETAILED OVERVIEW

The set up the combat order routine also resets the combat state of every
combatant to Normal.

2.3.4 Main combat round routines

The main combat round routines call the right AI routines to make NPCs
act, and govern when the player gets to act. Although it is somewhat unlikely
that you to mess with this part of the code (which should only be done if you
really know what you’re doing), understanding the turn sequence is essential
to understanding how ATTACK works.

Every combat round is the equivalent of an Inform 7 turn, even those
rounds where the player doesn’t get to do anything – in such cases, we
merely skip the parsing routines, but everything else (running every turn
rules, advancing the time, checking timed events, and so on) is taken place
as normal.

This is even true in the case of free actions – actions that you can do
without them taking up your turn. In ATTACK, looking, smelling, listening,
thinking, examining and taking inventory are defined as such free actions.
These actions have a property called acting fast, and if you take them, the
rules for this inidivual action are followed and then all the other rules are
skipped and a command prompt is printed again. Every turn tules do not
run, the time is not advanced, initiative is not recalculated, and so on. The
same thing happens when we tell Inform to “take no time”, which is as if we
could say “act as if the current action is acting fast” (which we cannot, since
it is illegal syntax).

We will now look at the turn sequence of Inform ATTACK, paying special
attention to those rules that are not in standard Inform 7.

1. The govern combat first part rule gets called first. If we are acting
fast, it does nothing. Otherwise, it does two things. First, it resets some
variables, changing the command prompt back to “>” and setting the
combat state of all present combatants back to Normal. Second, it
checks whether hate is present (i.e., whether a fight is going on, see
subsection 2.2.4), and if so it runs the two routines set up the combat
order and handle the combat round.

2. The second rule is the dont parse command when not the players
turn rule. This ensures that if the player’s combat state is Normal
(i.e., neither acting nor reacting), there will be no command prompt.
If we are acting fast, the rule will instead do nothing.2

2Normally, this shouldn’t make a difference. We should never be in a situation where

2.3. THE COMBAT ROUND 19

3. After that, we have the standard Inform 7 parse command rule,
followed by the generate action rule. This handles whatever the
player wants to do.

4. Then, we get ATTACK’s govern combat second part rule. If we
are acting fast, this rule will do nothing. Otherwise, it will change the
player’s combat state from React to Reacted (if applicable); then it will
run the have a reaction routine; and finally, it will run the combat.

5. At this point, we get to the acting fast rule, which stops the turn
sequence if we are acting fast. Everything after this rule will not be
reached if we are acting fast, and everything before this rule except
for the parse/generate-action rules turns itself off if we are acting fast.
Thus, if we are acting fast, we will skip everything until we get to the
next parse command rule.

6. From now on, we have all the usual Inform 7 rules: the every turn
stage rule is called and will run through the every turn rulebook;
timed events take place, the time is advanced, and so on.

We see that four specially defined clauses or routines are called: set up the
combat order was already talked about in subsection 2.3.3; we will presently
discuss the other three, handle the combat round, have a reaction, and run
the combat.

2.3.5 Handling the combat round

The routine called to handle the combat round is the routine that makes the
attacker act. It chooses the first row in the Table of Combat Order, which
has previously been set up by the set up the combat order routine. It then
puts the name found in the row into the global variable called global attacker,
and sets the initiative of the global attacker to 0 and his combat state to Act.

If the global attacker is the player, it changes the command prompt to
“Act>” and stops – from this point, the parse command rule will take over.

If the global attacker is someone else, his combat AI rulebook is called.
This rulebook will decide what the global attacker does, and will carry out
the action, and/or store it for being carried out later by the run the combat
routine. (Attacks, for instance, are carried out in two parts, with the defender
having a chance to react in between.) The AI is discussed in section 2.6.

acting fast changes the combat state of the player – but if an author accidentally makes
this happen, the current clause will stop the interpreter from getting into an infinite loop.

20 CHAPTER 2. ATTACK: DETAILED OVERVIEW

If the action of a non-player global attacker has led to the player having
the combat state React (for instance, the global attacker has attacked the
player), the command prompt is changed to “React>” – from this point, the
parse command rule will take over.

2.3.6 Having a reaction

The have a reaction routine runs through the Table of Combat Order and
makes everyone whose combat state is React do something, after which it
changes their combat state to Reacted. In order to make a person do some-
thing, it puts his name into the global variable called global attacker, and
then calls his combat AI rulebook.

The AI routines will be able to see whether they have to devise an action
or a reaction by checking the combat state of the global attacker – if this is
Act, they must come up with an action, if it is React, they must come up
with a reaction. It should not be possible to have any other state at this
point.

2.3.7 Running the combat

Some actions must be carried out in two different phases. For instance, if A
attacks B, we have the following steps:

1. A declares his attack.

2. B gets to react.

3. A carries out his attack.

ATTACK handles this in the following way:

1. The fight consequences variable is false. We try the action “A attacking
B”, the behaviour of which depends on the fight consequences variable.
We store the action “A attacking B” in the Table of Stored Combat
Actions.

2. B’s combat AI rulebook is followed.

3. The fight consequences variable is now set to true. We try all the actions
in the Table of Stored Combat Actions (after sorting it in Combat Speed
order, although this has no effect in standard ATTACK), which in this
case will include the action of “A attacking B”. This action will now
have a different effect, because the fight consequences variable has a

2.4. STRIKING A BLOW 21

different value. Finally, we reset the fight consequences variable to
false.

It is the third part of this scheme, where we sort the Table of Stored
Combat Actions, then run through it, try all the actions put into it, and
finally blank it out, that is handled by the run the combat routine.

In standard ATTACK, only the attack action follows this scheme, but
authors will want to use it for any custom actions that allow a reaction. See
also the section on attacking, 2.5.2.

2.4 Striking a blow

The striking a blow routine is where the real action takes place: dice are
rolled, damage is calculated, life and death are decided. It is a very compli-
cated routine that calls on many rulebooks, seventeen of which are interesting
for authors. They are the entrypoints where you can intervene in the calcu-
lations and in how the results are reported. Most of your customisation of
ATTACK will consists of rules that are to be placed in one of these seventeen
rulebooks, so it pays to understand them.

2.4.1 A few preliminaries

At this point, the source defines a number of global variables as well as the
weapon kind and the readied property.

The global attacker and the global defender are persons that vary. Ba-
sically, any routine in the game that gets called can assume that te global
attacker is the person attacking and the global defender is the person defend-
ing.

A weapon is a kind of thing. Weapons can be readied or not readied,
and are usually not readied. Readying a weapon is an action. The readied
weapon is the weapon one uses in attacks. For more on weapons, see section
2.7.

Two global variables that are weapons that vary are also defined: the
global attacker weapon is the weapon with which the global attacker attacks,
while the global defender weapon is the weapon with which the global defender
defends.

Several numbers that vary that are used in combat calculations are defined
here:

• The to-hit roll is the die roll made to see whether the attacker hits the
defender.

22 CHAPTER 2. ATTACK: DETAILED OVERVIEW

• The to-hit modifier is the bonus that is to be added to the to-hit roll.

• The damage is the amount of damage the attack will do.

• The damage modifier is the bonus that is to be added to the damage.

• The final damage is the amount of damage that the defender actually
sustains in the end – i. e., after everything which can add or subtract
damage has been taken into account. This is an important variable,
because (among other things) the printed text and whether or not you
lose concentration depend on whether this number is greater than 0 or
not.

2.4.2 The big routine

During run the combat (see 2.3.7), attack actions will end up calling the
make A strike a blow against B routine, where A is the attacker and B is
the defender. This routine is complicated, so I will first give an overview of
its logic, and then we will discuss the important parts one by one. Those
important parts are the seventeen entry points – places (rulebooks) in the
striking a blow routine where the author of a game may want to intervene
and change things.

• First, the global attacker and the global defender are set to the two
persons identified in the call to the routine.

• Next, the pressing relation is made true between the attacker and the
defender. (We will come back to this in section 2.6.4; the basic idea is
to remember who someone has been attacking and to give that person
a greater chance to choose the same target in the next round. This
makes for consistency in larger fights.)

• We then set the global attacker weapon and the global defender weapon
to random readied weapons enclosed by the global attacker and global
defender respectively. (No person should be able to have more than
one readied weapon, but if through some coding mistake they do, the
game just chooses one to use randomly.)

• We now consider the reset combat variables rules, which reset all the
values and modifiers stored in the last round to their default values.

• Entry point 1: does attacking begin? We now abide by the
whether attacking begins rules. If these rules decide no, the entire rou-
tine is stopped right here, and no blow is struck.

2.4. STRIKING A BLOW 23

• Entry point 2: preliminary results of attacking. Anything that
happens just because an attack is going to take place happens here, in
the preliminary results of attacking rules.

• Entry point 3: basic attack roll. We roll the die to see whether
the attacker will hit in the basic attack roll rules.

• Entry point 4: apply the attack modifiers. We calculate and
apply bonuses and maluses on the attack roll in the attack modifiers
rules.

• Entry point 5: calculate results of the attack roll. The calculate
results of the attack roll rules calculate the final numerical result of the
attack roll.

• Entry point 6: show results of the attack roll. The show results
of the attack roll rules give the player feedback on the results of the
attack roll, if desired.

• Entry point 7: did the attack hit? The whether the attack hit rules
decide if the attack hit or not; if they decide no, entry points 7 to 12
are skipped.

• Entry point 8: immediate results of hitting. The immediate
results of hitting rules can do anything that ought to happen before
damage is applied or even calculated.

• Entry point 9: rolling the die for damage. In the basic damage
roll rules, the die is rolled to decide how much damage the hit will do.

• Entry point 10: modifying the damage. We now, in the damage
modifiers rules, add or substract whatever bonuses or maluses apply to
the damage.

• Entry point 11: calculating the final damage. At this stage, the
calculate the final damage rules decide what the final damage is and
write it to the final damage global variable.

• Entry point 12: showing the damage. The show the final damage
rules can print something to the screen at this point (and will do so in
standard ATTACK if the numbers boolean is true).

• Entry point 13: pre-prose-generation effects. Anything that
needs to be done or determined before we can start printing the results
of the blow to the screen is done here.

24 CHAPTER 2. ATTACK: DETAILED OVERVIEW

• Entry point 14: reporting the results of the blow. The most
important prose generating rulebook, the flavour text rulebook, is now
followed.

• Entry point 15: aftereffects. Unless the player is killed, we now
follow the aftereffect rules, which govern special results of the attack.
(We don’t need to do this if the player is dead, and don’t want to print
anything after the death message.)

• Entry point 16: remove temporary circumstances. Now the
take away until attack circumstances rules reset any bonuses or cir-
cumstances that applied only until an attack was made (or defended
against). For instance, the attacker’s concentration is reset.

• Entry point 17: final report. At the final stage, the final blow
report rules can add any additional prose they wish.

Why do we have so many entry points, when the same results could be
gotten with a single rulebook? The point is of course to make it possible
to easily position rules at the right points in the process, when the right
calculations have been made and the right prose has been printed to the
screen. We will discuss examples of rules that go or might go into each of
the seventeen rulebooks in the next section.

2.4.3 The seventeen entry points in detail

Entry point 1: does attacking begin?

The whether attacking begins rules can preempt an attack from happening
before any calculations are made and anything is printed to the screen. You
would want to use this to stop a chained player from attacking anyone, for
instance, especially if he can become chained during the reaction to his attack.
(This can be preferable to having a check attacking rule, because there might
be other actions that call the striking a blow routine.) If the rules decide no,
the attack is stopped.

Standard ATTACK leaves the whether attacking begins rulebook empty.

Entry point 2: preliminary results of attacking

The preliminary results of attacking rules handle anything that happens as
soon as an attack is actually taking place and is certain not to be preempted.
This is primarily useful for taking away bonuses that should no longer apply

2.4. STRIKING A BLOW 25

even in the current round; e.g., the monk’s divine powers that he has gotten
in return for his vow of pacifism.

Standard ATTACK leaves the preliminary results of attacking rulebook
empty.

Entry point 3: basic attack roll

The basic attack roll rules generate a new value for the to-hit roll. You will
want to intervene here if you want to change ATTACK’s standard mecha-
nism (which generates a random number between 1 and 10), for instance, by
generating a number between 1 and 20, or adding up the results of three six-
sided dice for a more Gaussian distribution. You will also want to intervene
here if you wish to print non-standard text here.

Standard ATTACK has one rule in the basic attack roll rulebook :

1. The standard attack roll rule generates a random number between 1
and 10. It also prints “Rolling [the number rolled]” if the numbers
boolean is true, i.e., if either player or author has stated that they wish
to see the numerical calculations.

Entry point 4: apply the attack modifiers

One of the rulebooks the author will wish to use most often are the attack
modifiers rules. Here we apply bonuses and maluses to the attack roll, usu-
ally by adding or substracting a certain amount from the to-hit modifier (a
number that varies). Any rule in this rulebook should also print out the
applied modifier, with an explanation, if the numbers boolean is true.

Standard ATTACK comes with six rules in the attack modifiers rulebook :

1. The melee attack bonus rule adds the melee of the global attacker to
the to-hit modifier.

2. The concentration attack modifier rule adds a concentration bonus to
the to-hit modifier; see section 2.5.3 for more details.

3. The parry defence bonus rule subtracts a certain number from the to-
hit modifier if the defender has chosen to parry the attack; see section
2.5.4 for more details.

4. The dodge defence bonus rule subtracts a certain number from the to-
hit modifier if the defender has chosen to dodge the attack; see section
2.5.5 for more details.

26 CHAPTER 2. ATTACK: DETAILED OVERVIEW

5. The attack bonus from weapon rule adds or subtracts the weapon attack
bonus of the global attacker’s weapon.

6. The standard tension attack modifier rule adds one half (rounded down)
of the current tension; see section 2.8.2 for more details.

Entry point 5: calculate results of the attack roll

This rulebook calculates the final result of the attack roll. It is somewhat
unlikely that you will want to change or add to the single rule that ATTACK
contains in the calculate results of the attack roll rulebook :

1. The standard calculate results of the attack roll rule simply adds the
to-hit modifier to the to-hit roll.

Entry point 6: show results of the attack roll

This is a prose generation stage that shows the final result of the attack roll.
Standard ATTACK contains one rule in the show results of the attack roll
rulebook :

1. The standard show results of the attack roll rule prints an “=” and the
result of the attack roll (if the numbers boolean is true).

Entry point 7: did the attack hit?

The the whether the attack hit rules decide whether the attack did or did not
hit. This is where you want to intervene for any last-minute possibilities of
hitting or failing to hit. Effects that grant a certain probability of escaping a
blow that would have otherwise connected (such as Dungeons & Dragons 3’s
concealment or Diablo 2’s chance of blocking) could be implemented here.

If the attack does hit, the rules should succeed; if it does not, the rules
should fail. Entry points 7 to 12 are skipped if the rules fail.

Standard ATTACK has one rule in the whether the attack hit rulebook :

1. The standard whether the attack hit rule succeeds if and only if the
to-hit roll is greater than the defence of the global defender. It also
finishes the text output of the attack roll (if the numbers boolean is
true).

2.4. STRIKING A BLOW 27

Entry point 8: immediate results of hitting

The immediate results of hitting rules should contain anything that happens
when an attack hits, but before damage is calculated. If hitting a magma
elemental melts your weapons so that they lose their edge and now have
reduced damage, starting with the current damage roll, this is the place to
make it happen.

Standard ATTACK leaves the immediate results of hitting rulebook empty.

Entry point 9: rolling the die for damage

The basic damage roll rules roll the die to see how much damage will be
applied. If you want to do anything fancier than the standard roll from 1
to the attacker’s weapon’s damage die, this is the place to be – for instance,
rolling two six-sided dice, making damage non-random, rolling twice and
applying the higher damage, and so on.

Standard ATTACK has one rule in the basic damage roll rulebook :

1. The standard damage roll rule chooses a random number between 1 and
the damage die of the global attacker weapon. It also starts printing
the results of the damage calculations (if the numbers boolean is true).

Entry point 10: modifying the damage

This is another rulebook which authors will want to customise heavily: the
damage modifiers rules handle all the bonuses and maluses that have to be
applied to the damage roll. Weapons, skills, circumstances that allow you
to do more damage; armour or spells that absorb damage; this is where you
put them.

Standard ATTACK has two rules in the basic damage modifiers rulebook :

1. The concentration damage modifier rule adds a concentration bonus to
the damage modifier; see section 2.5.3 for more details.

2. The standard tension damage modifier rule adds one third of the cur-
rent tension (rounded down) to the damage modifier; see section 2.8.2
for more details.

Entry point 11: calculating the final damage

The calculate the final damage rules decide on what the final damage will
be, after modifiers have been applied to the damage roll. This is the place
to intervene if you want to have effects that multiply the final damage by

28 CHAPTER 2. ATTACK: DETAILED OVERVIEW

a certain number (a curse that doubles all damage dealt to the player, for
instance), or that are dependent on the exact damage dealt (somewhat un-
likely, but think of a monster that is immune to any amount of damage that
is not a prime number).

Standard ATTACK has one rule in the calculate the final damage rule-
book :

1. The standard calculate the final damage rule sets the final damage to
be the sum of the damage and the damage modifier; unless this sum is
less than 0, in which case the final damage is set to 0. (There can be
no negative damage in standard ATTACK.)

Entry point 12: showing the damage

If desired, the show the final damage rules will print the numerical result of
the damage roll. Anything that should be printed to the screen when we are
not looking purely at the numbers should be put in the print flavour text
rules, entry point 14.

There are two rules in the show the final damage rulebook in standard
ATTACK:

1. The standard show the final damage rule prints “= n damage” (if the
numbers boolean is true).

2. The standard report result of blow in numbers mode rule finishes the
numerical prose generation by appending a phrase like “allowing you to
espace unscathed”, “wounding [the opponent] to [n] health”, or “killing
you” – based on whether the attack hit, did fatal damage, and was
initiated against the player or not.

Entry point 13: pre-prose-generation effects

In the aftereffects before flavour text rules, we do whatever needs to be done
before we can print the main prose. Only rules that will actually change the
prose generated should be put here; all the others should be deferred to entry
point 15, the aftereffects rules.

For example: if you have a weapon that has an n% probability of destroy-
ing undead completely in a huge flash of light, where n is the damage dealt
to the undead by the blow, this is the place to put a rule concerning this: the
final damage has already been calculated, and whether or not the undead is
destroyed will obviously have to be reflected in the prose generated.

Standard ATTACK has just one rule here, which is rather essential (and
allows all subsequent rules to refer to the new health of the defender):

2.4. STRIKING A BLOW 29

1. The subtract damage from health rule does exactly what it says: it
subtracts the final damage from the health of the global defender. (We
do not need to make the global defender “killed” if his health drops
below 1, because being killed is defined as having 0 or less health.)

Entry point 14: reporting the results of the blow

The print flavour text rules are very important: they generate the prose at
the end of the blow. Nevertheless, you probably don’t want to write any print
flavour text rules. ATTACK uses a print flavour text rule called the flavour
text structure rule to call four further rulebooks, and these are the ones you
should add your own custom rules to. The structure is the following. First,
we abide by the intervening flavour text rules. If these decide no, the rest of
the rules is not run. If they decide yes (or nothing), one of the three other
rulebooks is run. If the global defender is alive, we run the flavour rulebook.
If the global defender is dead and the global defender is the player, we run
the fatal player flavour rulebook ; if he is not the player, we run the fatal
flavour rulebook.

There is a fifth rulebook called the attack move flavour rules. This rule-
book gets called whenever an actor initiates an attack – it is what you see
before you have to react.

Four of these five rulebooks have one standard rule in them, as a backup.
In general, you will always want to intervene and make the game print some-
thing more interesting than the bland description in the standard rule. Since
what you want to print will depend heavily on your particular game, AT-
TACK cannot provide detailed rules for you.

The four pre-defined backup rules are:

• A last flavour rule called the basic flavour rule, which prints either “A
misses B.” or “A hits B.”, as appropriate.

• A last fatal player flavour rule called the basic fatal player flavour rule,
which prints “You are killed by B.”.

• A last fatal flavour rule called the basic fatal flavour rule, which prints
“A kills B.”.

• And a last attack move flavour rule called the basic attack move flavour
rule, which prints “A lunges towards B.”.

30 CHAPTER 2. ATTACK: DETAILED OVERVIEW

Entry point 15: aftereffects

The aftereffects rules handle everything that results from the blow and is
not the simple giving of damage. Does the defender get poisoned, frozen,
burned? Does he lose his concentration? Will the attacker gain health using
his vampiric weapon? Does the defender drop his weapon and beg for mercy?
Does he die and explode, dealing damage to all other persons? Does the
attacker’s weapon or the defender’s shield break?

Standard ATTACK comes with four rules in the aftereffects rulebook :

1. The modifiy initiative based on combat results rule decreases the initia-
tive of the defender by 2 if he was damaged, and that of the attacker
by 2 if he failed to damage the defender.

2. The lose concentration when hit rule takes away the defender’s concen-
tration if he was dealt any damage.

3. The decrease ammo rule decreases the amount of ammunition in the
attacker’s weapon by 1 (if it is a weapon that uses ammunition). See
section 2.8.1 for more information on weapons with ammunition.

4. The standard reduce tension after hit rule decreases the tension when
damage has been dealt; see section 2.8.2 for more information.

Entry point 16: remove temporary circumstances

Here, in the take away until attack circumstances rules, we reset any circum-
stances that lasted only until the attack was finished. Most special attacks
or defences will be implemented using a variable that is set to true when
the action is declared, and set to false by this rulebook. For instance, if you
parry, the player gets the at parry property. During the attack, rules can
check whether the defender is at parry. At the end of the attack, in the
current rulebook, the player gets the not at parry property.

Standard ATTACK has three rules in the take away until attack circum-
stances rulebook :

1. The lose concentration after attacking rule removes the concentration
of the attacker.

2. The no longer at parry after the attack rule removes the at parry prop-
erty from the defender (which he will have if he parried).

3. The no longer at dodge after the attack rule removes the at dodge prop-
erty from the defender (which he will have if he dodged).

2.4. STRIKING A BLOW 31

Entry point 17: final report

The final entry point is the final blow report rules. Here you can do any
reporting that had to be saved till last, so you can be certain that it will be
printed after everything else.

Standard ATTACK has one rule in the final blow report rulebook :

1. The end reporting blow with paragraph break rule comes last in the final
blow report rulebook; it prints a paragraph break. (It is assumed that
no other rules print paragraph breaks, since they do not know whether
the next rule wants to run on or wants to start reporting on a new
paragraph.)

2.4.4 Which entry points should I use?

All of that may be a little overwhelming if you are using ATTACK for the
first time! Each of the entry points can be useful, and if you wish to use
ATTACK extensively you will want to understand them all. But you can do
most things with just a handful of the entry points, namely the following:

• The attack modifiers rulebook (entry point 4) is used for anything that
gives a bonus or malus to the attack roll.

• The damage modifiers rulebook (entry point 10) is used for anything
that gives a bonus or malus to the damage done.

• The flavour text rulebook (entry point 14) should not be added to di-
rectly, but the rulebooks it calls on manage all the normal prose gen-
eration and should be customised heavily.

• The aftereffects rulebook (entry point 15) can be used to implement
most ‘special effects’: results of attacking that are not simply damage
dealt.

• The take away until attack circumstances rulebook (entry point 16) is
used for resetting all the variables your custom actions have set in order
to indicate to the rest of the game that they are being performed.

And if you think this is still overwhelming, check out the examples in the
next chapter – by looking at how some things are done, you will quickly learn
to do them yourself.

32 CHAPTER 2. ATTACK: DETAILED OVERVIEW

2.5 Standard combat actions

ATTACK defines several new actions, and changes the behaviour of several
others. The five changed and new actions discussed in this section are waiting,
attacking, concentrating, parrying and dodging. The weapon-related actions
readying and reloading are discussed in sections 2.7 and 2.8.1 respectively;
the meta-actions switching the numbers on and switching the numbers off
have been discussed in section 2.1.2.

2.5.1 Waiting

Waiting (commands wait or z) still has the actor do nothing, but ATTACK
defines one additional rule. If and only if the actor’s combat state is Act
(which means the actor is having his turn in a combat situation), waiting
automatically sets the actor’s initiative to be 2 less than that of the person
with the highest initiative (excluding the actor himself, who necessarily has
the highest initiative of all).

The effect of this rule, the waiting lets someone else go first rule, is that
waiting acts more or less as letting one person go first – not as letting everyone
in the combat go first. This gives the person who waits more control about
when he acts, and getting such control is the only possible motive for waiting
(since otherwise, one would always be better off concentrating). Not complete
control, by the way: initiative is partly decided by randomness, and more
than one person might have the highest initiative score, so you can never be
certain how many people get to make a move before it is your turn again.

2.5.2 Attacking

Attacking (commands attack or a) is obviously an important action in AT-
TACK. We first unlist the standard Inform 7 block attacking rule, since this
time, violence is the answer. We add “a” as a synonym for “attack”, since
the player will presumably type this often. And we tell the parser that it is
unlikely that the player wishes to attack killed persons, but that it it very
likely that he wishes to attack persons whose faction he hates. (This means
that when there is only one enemy present, the player can simply type “a”.)

We then define six check attacking rules, which stop the attack from
happening if the noun is not a person (the only attack persons rule); if the
noun is not alive (the the only attack the living rule); if the noun is the player
(the do not kill yourself rule); if the noun is of the player’s faction (the do
not attack friendly people rule); if the noun is of a faction the player doesn’t
hate (the do not attack neutral people rule); or if the combat state of the

2.5. STANDARD COMBAT ACTIONS 33

player is React, since one can only attack when it is one’s turn (the cannot
attack as reaction rule). All of them ensure that the player’s action takes no
time if it fails to pass the check.

Once all these checks have been passed, we know that the target is an
alive person of a faction the player hates, and that the player is allowed
to attack. Carrying out the attack is handled by two carry out an actor
attacking rules (the “an actor” there makes it apply to NPCs as well as to
the PC):

1. The standard attacking first phase rule is ran when the fight conse-
quences variable is false, that is, before people have a chance to react.
It sets the global attacker to the actor and chooses a random readied
weapon to be the global attacker weapon; it consults the attack move
flavour rulebook (which can use the values set in the previous stage);
it adds the action of the attacker attacking the defender to the Table
of Stored Combat Actions, with a combat speed of 10; it changes the
combat state of the noun to React, so that he will have a chance to
react; it changes the provoker of the noun to the actor; and it changes
the provocation of the noun to the attack action.

2. The standard attacking second phase rule is ran when the fight conse-
quences variable is true, which will be the case when the run the combat
routine is moving through the Table of Stored Combat Actions. The
rule is very simple: if both actor and noun are still alive, it makes the
actor strike a blow against the noun, thus calling the routine we have
discussed extensively in section 2.4.2 and 2.4.3.

2.5.3 Concentrating

Concentrating is a new action which the player can perform by typing either
“concentrate” or “c”. Every person has a number called the concentration,
which is usually 0 and can be increased up until 3. Having concentration
gives the actor a bonus to the attack roll and a bonus to damage:

Concentration Attack bonus Damage bonus
0 0 0
1 +2 0
2 +4 +2
3 +8 +4

There are no check an actor concentrating rules, since you can always con-
centrate, even as a reaction. There are three carry out an actor concentrating
rules :

34 CHAPTER 2. ATTACK: DETAILED OVERVIEW

1. A first rule called the standard concentrating improves initiative rule,
which adds the current concentration (that is, the old concentration)
to the actor’s initiative. This means that if your current concentration
is 2, and you concentrate once more, you get a +2 initiative bonus for
the next round.

2. A rule called the standard carry out concentrating rule, which increases
concentration by 1, unless this would take it above 3.

3. A last rule called the standard concentrating prose rule, which prints a
message that the actor is concentrating, and how concentrated (mildly,
quite or maximally) that person now is.

We then have two rules that implement the attack and damage bonuses
of concentration. The first is an attack modifiers rule called the concentra-
tion attack modifier rule; the second is a damage modifiers rule called the
concentration damage modifier rule.

Next come two rules that take concentration away. An aftereffects rule
called the lose concentration when hit rule takes away the defender’s concen-
tration when the damage dealt to him was greater than 0; this rule calls the
let X lose concentration routine. A take away until attack circumstances rule
called the lose concentration after attacking rule takes away the attacker’s
concentration once he has attacked (by simply setting it to 0).

ATTACK then defines the let X lose concentration routine – which can
be called by any of the author’s own rules, if so desired. This routine stops
immediately if the concentration of X is already 0. If it is not, it sets the con-
centration of X to zero, writes X to the concentration loser global variable,
and considers the lose concentration prose rules.

There is one standard last lose concentration prose rule called the stan-
dard lose concentration prose rule, which prints “You lose your concentra-
tion!” or “[The concentration loser] loses concentration!” You can substitute
your own prose by writing a lose concentration prose rule and have it stop
the rulebook if it considers itself applicable.

Finally, there are a chance to win rule called the CTW concentration
bonus rule, which is needed to have the AI evaluate attacking (more infor-
mation can be found in section 2.6); and a carry out going rule called the
lose concentration on going rule, which makes an actor lose all concentration
when he moves – this ensures that you cannot maximally concentrate in an
empty room and then take that concentration with you to your next fight.

2.5. STANDARD COMBAT ACTIONS 35

2.5.4 Parrying

Parrying is a new action which the player can perform by typing either
“parry” or “p”. ATTACK gives every person an either/or property: a person
can either be at parry or not at parry.

The check parrying rule known as the cannot parry when not reacting rule
checks whether the attack state of the player is React ; if it is not, it prints
the “You parry, but there is no attack.” message and ensures that no time
is taken by the (failed) action.

We have two carry out an actor parrying rules, and a last report an actor
parrying rule:

1. The parrying changes initiative rule gives the person who parries one
bonus initiative – it’s an active reaction that gets you close to your
enemies and into the thick of combat.

2. The standard carry out parrying rule makes the actor be at parry –
which will trigger an attack modifiers rule later.

3. The standard parry prose rule prints a single line saying that the de-
fender strikes up a defensive pose.

Now, the parry defence bonus rule is an attack modifiers rule that calcu-
lates and applies the actual attack modifier of the parrying action. Parrying
is a little bit complicated, since its effectiveness depends both on the weapon
the attacker is using and the weapon the defender is using. You can’t parry
a shotgun, and you can’t parry with a longbow – to name two obvious ex-
amples. So how it works is this: every weapon has two numbers, the active
parry max and the passive parry max (defined in the part of ATTACK that
defines weapons, discussed in section 2.7). The active parry max defines how
well you can parry with the weapon, the passive parry max defines how well
you can parry against the weapon. The attack penalty of the attacker is
either the passive parry max of his weapon, or the active parry max of the
defender’s weapon, whichever is lower.

Example: the active parry max of a sword is 4, while its passive parry max
is 3. The active parry max of sawed-off shotgun is 2, while its passive parry
max is 0. In the first round, I parry your sword attack with my shotgun: the
attack penalty of your attack is equal to the lower number of 3 and 2, which
is 2. In the second round, you parry my shotgun shot with your sword. My
attack penalty is the lower number of 4 and 0, which is 0 – your sword does
nothing to deter me.

The parry defence bonus rule, then, makes this calculation, applies the
penalty, and prints the result (in numbers mode).

36 CHAPTER 2. ATTACK: DETAILED OVERVIEW

A take away until attack bonuses rule called the no longer at parry after
the attack rule takes away the at parry status of the defender once the attack
is finished.

Finally, there is a best defender’s action rule called the CTW parry bonus
rule, which ensures that the AI can accurately identify the effects of parrying
on its chances of landing a hit.

2.5.5 Dodging

Dodging is a new action that the player can perform by typing “dodge” or
“do”. (Problems with the English verb “to do” seem unlikely to me, since it
is rarely used in IF commands.) ATTACK gives every person an either/or
property: a person can either be at dodge or not at dodge.

The check dodging rule known as the cannot dodge when not reacting rule
checks whether the attack state of the player is React ; if it is not, it prints
the “You dodge, but there is no attack.” message and ensures that no time
is taken by the (failed) action.

We have one carry out an actor dodging rule and one last report an actor
dodging rule:

1. The standard carry out dodging rule make the actor be at dodge – which
will trigger an attack modifiers rule later.

2. The standard dodge prose rule prints a single line saying that the de-
fender gets ready for quick evasive maneuvers.

An attack modifiers rule called the dodge defence bonus rule implements
the defence bonus given by the dodging action. This bonus is equal to the
dodgability of the attacker’s weapon – a property that is defined in section
2.7. So against a weapon with a dodgability of 3, you would get a +3 bonus
on your defence; against a weapon with a dodgability of 0, you would get
no bonus. This rule also prints the necessary explanation of the bonus for
numbers mode.

A take away until attack bonuses rule called the no longer at dodge after
the attack rule takes away the at dodge status of the defender once the attack
is finished.

Finally, there is a best defender’s action rule called the CTW dodge bonus
rule, which ensures that the AI can accurately identify the effects of parrying
on its chances of landing a hit.

2.6. ARTIFICIAL INTELLIGENCE 37

2.6 Artificial Intelligence

Obviously, ATTACK needs Artificial Intelligence. We could just have the
NPCs attack every turn, or we could have them make a completely random
choice – but that wouldn’t lead to interesting tactical combat, and would
severly limit the things an author can customise. So instead we have a
framework of rules that allows the NPCs to make informed decision about
what they wish to do to whom using what weapon.

2.6.1 Preliminaries

We set up three tables: the Table of AI Combat Person Options, the Table
of AI Combat Options and the Table of AI Combat Weapon Options, which
will be used to store persons, actions and weapons respectively. For each
of them, we define a routine that blanks out all the rows – the routines are
called by “blank out the [name of table]”.

In addition, we define four global variables that AI rules can use to com-
municate with each other: the stored row (a number that we’ll use to indicate
a row of a table), the stored person (a person), the stored weapon (a weapon)
and the stored action (a stored action).

2.6.2 Standard attacker AI

We then associate a rulebook called the combat AI rulebook with every per-
son. The combat AI rulebook of a person is usually the standard attacker
rulebook. If you want to override all the AI settings of a person, you should
put your own rulebook in its place.

The standard attacker rulebook does four things. First, it calls the have
the AI select a target routine, which selects an enemy to target – if no enemy
is found, the found-a-target boolean will be false and the following three steps
are skipped. Second, it calls the have the AI select a weapon routine. Third,
it calls the have the AI select an action routine. And finally, it tries the
selected action, which has been saved to the variable stored action.

Before we describe these routines in more detail, I should say a few words
about the order in which the AI routine makes its choices.

2.6.3 Three steps: person, weapon, action

The perfect AI would consider all possible combinations of a person, a weapon
and an action, and decide what the best of them is. But this easily leads to
a combinatorial explosion, so ATTACK opts for a simpler scheme. The AI

38 CHAPTER 2. ATTACK: DETAILED OVERVIEW

first chooses which person to attack; it then chooses which weapon to use;
and it finally chooses which action to perform.

But, you may say, this is needlessly wasteful: if the AI doesn’t attack, it
doesn’t need to spend time deciding on a person and a weapon! This is true,
but then again, whether to attack or do something else will depend on the
person and weapon chosen. For instance, the AI will choose to concentrate
rather than attack if it considers its chance to hit too low; but its chance to
hit obviously depends on who it is going to attack.

So although the person-weapon-action sequence is more computation in-
tensive than the action-person-weapon sequence, it also allows for more ra-
tional decision making, which is why I have chosen it for ATTACK.

2.6.4 First step: choosing a person

We first define the pressing relation which relates various people to various
people and is tested with “if A presses B”. The make A strike a blow against
B routine – the big routine discussed in section 2.4 – makes A press B by
calling the have A start pressing B routine. This latter routine makes sure
that A presses B and does not press anyone else.

The pressing relation is used by the AI routines when choosing a target.
Specifically, all NPCs will prefer to attack persons they press, which generally
means the person they have been attacking. They will also prefer (but to
a lesser extent) people who press them, which generally means people who
have recently attacked them. This gives a certain consistency to combats
with multiple people on each side. (It also allows the author to fine-tune the
selection of targets, because one can set the pressing relation by hand.)

Finding a person to attack is handled by the have the AI select a target
routine. This routine fills the Table of AI Combat Person Options with all
alive persons enclosed by the location whose faction is hated by the faction
of the attacker; each person also gets an initial “0” in his Weight entry. The
routine sets the found-a-target boolean to true if it finds at least one potential
target. (If there are no potential targets, the rest of the AI rules are skipped.)

For each possible target, we then call the standard AI target select rules.
The rules in this rulebook can use the stored person variable to check who
the potential target is, and the stored row variable to check to which row
in the Table of AI Combat Person Options they have to write their result.
They calculate whether it is a good idea to attack this person or not, and
change the Weight entry in this table accordingly.

Once the table is complete, it is sorted in random order, and then in
reverse Weight order. A random person with the highest Weight entry will

2.6. ARTIFICIAL INTELLIGENCE 39

then be in row 1, and this person will be chosen as the target – for this
purpose, he is stored in the global defender variable.

ATTACK comes with no fewer than ten standard AI target select rules :

1. The do not prefer passive targets rule subtracts 5 from the weight of
all persons whose faction is passive. These people pose no threat, so
they should not be attacked first.

2. The prefer targets you press rule adds 3 to the weight of all persons
pressed by the attacker. These will generally (though not necessarily)
be people who have just been attacked by the attacker, and it is natural
that one does not change one’s target too often.

3. The prefer those who press you rule adds 1 to the weight of all persons
who press the attacker. These will generally (though not necessarily) be
people who have just been attacking you, and it is natural to retaliate.

4. The prefer the player rule adds 1 to the weight of the player. Just a
little incentive to make things more interesting, people! You wouldn’t
want your allies to take all the hits, would you?

5. The prefer the severely wounded rule adds 2 to the weight of anyone
whose health is less than 50% of his permanent health; and another 4
to the weight of anyone whose health is less than 25% of his permanent
health. Like vultures the NPCs will fall on the wounded and dying.
Why? Because it is just good tactics in any game where the amount of
damage dealt by a person is not proportional to his health. All players
of RPGs and RTSes know that you must concentrate your fire and take
out your enemies one by one.

6. The prefer concentrated people rule adds 1 to the weight of anyone who
has a concentration of 1. This rises to 2 at a concentration of 2, and
to 5 at a concentration of 3. This, again, is simply good tactics: such
a high concentration must be broken before it can be used.

7. The prefer those with good weapons rule adds half the damage die of
the defender’s weapon to his weight. So if you use a weapon that
has a damage die of 8 (dealing between 1 and 8 damage), your weight
increases by 4. Again, this is good tactics: people who can deal a lot
of damage are dangerous and should be killed soon.

8. The do not prefer good parriers rule decreases the weight of a person
whose readied weapon offers a particularly good defense against the

40 CHAPTER 2. ATTACK: DETAILED OVERVIEW

readied weapon of the attacker. (Optimally, we would run this rule
after choosing a weapon for the attacker; but, as explained above, we
will have to make do with the current approximation.) The weight is
decreased by the positive difference (if any) between the parry bonus
and the dodge bonus the defender would have against the attacker.

9. The do not prefer high defence unless concentrated rule ensures that if
an NPC has no concentration, he will go for targets with a low defence;
but if he has managed to get a high concentration, he will use this
bonus against persons who would otherwise be hard to hit. The rule
first calculates the difference between the defender’s defence and the
attackers melee. (If it turns out to be negative, it is set to 0, but this is
not likely.) The number thus gotten is subtracted from the weight if the
attacker’s concentration is 0; it is added to the weight if the attacker’s
concentration is 2; and it is added twice if the attacker’s concentration
is 3. Nothing is done if the attacker’s concentration is 1.

10. The randomise the target result rule adds a random number between
0 and 4 to the weight, just to makes things interesting and less pre-
dictable.

2.6.5 Second step: choosing a weapon

Finding a weapon to attack with is handled by the have the AI select a
weapon routine. First, we check whether there is by any chance only one
weapon enclosed by the attacker; if so, we automatically choose it. If not,
the routine fills the Table of AI Combat Weapon Options with all weapons
enclosed by the attacker; each weapon also gets an initial “0” in its Weight
entry.

For each possible weapon, we then call the standard AI weapon select
rules. The rules in this rulebook can use the stored weapon variable to check
what the potential weapon is, and the stored row variable to check to which
row in the Table of AI Combat Weapon Options they have to write their
result. They calculate whether it is a good idea to attack with this weapon
or not, and change the Weight entry in this table accordingly.

Once the table is complete, it is sorted in random order, and then in
reverse Weight order. A random weapon with the highest Weight entry will
then be in row 1, and this weapon will be chosen – for this purpose, it is
stored in the stored weapon variable.

ATTACK comes with no fewer than ten standard AI weapon select rules,
but two of those will be discussed in the subsection on reloadable weapons,
2.8.1.

2.6. ARTIFICIAL INTELLIGENCE 41

1. The prefer lots of damage rule simply adds the damage die of the
weapon to its weight. More damage is better.

2. The prefer low dodgability and passive parry rule subtracts either the
weapon’s dodgability or the weapon’s passive parry max from the
weight. It is bad for you if your weapon is easy to dodge or parry
– but if it is easy to dodge, it doesn’t really matter whether it’s easy
to parry, and the other way around.

3. The prefer good active parry rule adds half the weapon’s active parry
max to the weight. It’s nice if a weapon can be easily parried with, but
we divide it by 2 because we always have dodging as an alternative.

4. The prefer good attack bonus rule adds 1.5 times the weapon attack
bonus of the weapon to the weight (rounded up). Even a +1 attack
bonus is a good modifier.

5. The prefer readied weapon rule adds 3 to the weight if the weapon
is readied and the combat state of the actor is Act; and adds 1 if the
weapon is readied and the combat state of the actor is React. Readying
another weapon costs an entire turn, which is costly, but less costly if
you can do it while reacting to an attack.

6. The prefer readied weapon if attacker almost dead rule adds 2 to the
weight if the weapon is readied and the attacker’s health is less than
25% of his permanent health. If you’re almost dead, it’s not a great
idea to spend a turn switching to another weapon. (Switching to a
better weapon is an investment which needs time to pay itself back.)

7. The prefer readied weapon if defender almost dead rule adds 2 to the
weight if the weapon is readied and the defender’s health is less than
25% of his permanent health. If your opponent is almost dead, it’s
more efficient to go for a quick kill than to improve your long term
chances.

8. The randomise the weapon result rule adds a random number between
0 and 2 to the weight. Since 2 is less than the +3 bonus given to
a readied weapon, it is certain that if an actor carries two identical
weapons, he will never spend a turn switching from one to the other.

2.6.6 Third step: choosing an action

The third routine that is called by the standard attacker rulebook is have the
AI select an action. At this point global defender contains the target and

42 CHAPTER 2. ATTACK: DETAILED OVERVIEW

stored weapon contains the chosen weapon. Now we set up a table of possible
actions, the Table of AI Combat Options. After blanking this table out, we
call the standard AI action select rules. For every possible action that the
AI can perform, there is a first standard AI action select rule which adds
this action to the table; and then the other rules in the rulebook will change
its Weight entry, after which the table is randomised and sorted. A random
action with the highest weight is chosen and stored as the stored action.

One additional first standard AI action select rule is the calculate the
chance to win rule. We will consider it in more detail in the next subsection.

Standard ATTACK comes with twenty standard AI action select rules :

1. The calculate the chance to win rule will be discussed in subsection
2.6.7.

2. The consider reloading rule is discussed in subsection 2.8.1; it sets up
the reload action.

3. The consider reloading rule adds the readying action to the table, with
a base weight of 0.

4. The consider parrying rule adds the parrying action to the table. It
gives it a base weight of 5 if the combat state of the actor is React, and
a -1000 base weight otherwise. (We should only parry when reacting.)

5. The consider dodging rule adds the dodging action to the table. It
gives it a base weight of 5 if the combat state of the actor is React, and
a -1000 base weight otherwise. (We should only dodge when reacting.)

6. The consider concentrating rule adds the concentrating action to the
table, and gives is a base weight of 3.

7. The consider attacking rule adds the action of attacking the global
defender to the table. It gives it a base weight of -1000 if the combat
state of the actor is React, and a base weight of 5 otherwise. (We
should only attack when not reacting.)

8. The standard attack select rule adds -100 to the weight of the attacking
action when the normalised chance-to-win is 0. It then adds normalised
chance-to win minus 5 to the weight. Thus, if the normalised chance-
to-win is 0 (0% chance of hitting), attacking gets a -105 penalty; if the
normalised chance-to-win is 2 (20% chance of hitting), attacking gets a
-3 penalty; if the normalised chance-to-win is 8 (80% chance of hitting),
attacking gets a +3 bonus. And so on.

2.6. ARTIFICIAL INTELLIGENCE 43

9. The standard concentration select rule adds 5 minus the chance-to-win
to the weight of the concentration action. Thus, if the chance-to-win is
7 (70% chance of hitting), the concentration actions gets a -2 penalty;
but if the chance-to-win is -2 (0% chance of hitting, and in need of at
least a +3 attack bonus), concentration gets a +7 bonus. Additionally,
if the concentration of the actor is already at the maximum of 3, the
weight is decreased by 100.

10. The concentration influences attacking rule adds the concentration of
the global defender to the weight of the attack action. If the concen-
tration of the global defender is 3, an additional +2 bonus is added.
If your enemy is highly concentrated, you must break his concentra-
tion before he has a chance to use his bonuses! (ATTACK currently
does not add a bonus for the concentration of the attacker, assuming
that the added chance to hit takes care of this. But this is certainly
something one might wish to fine-tune.)

11. The standard parry and dodge against attack select rule only runs if the
combat state of the actor is React and the provocation is the attacking
action. It checks whether doding or attacking is a good idea against an
attack. If parrying will lead to a bonus as good as or better than that
of dodging, the parry action’s weight is increased by the defence bonus
gained, while the dodge action’s weight is decreased by 100 (minus the
dodge bonus) – unless the defence bonus gained by parrying is 0, in
which case the parrying action also gets a -100 penalty. (In such a
case, it is better to concentrate.) If parrying will lead to a worse bonus
than dodging, the dodge action’s weight is increased by the defence
bonus gained by dodging, while the parry action’s weight is decreased
by 100 (minus the parry bonus). The reason to slightly prefer parrying
is that it gives a +1 initiative bonus.

12. The standard ready select rule gives a -100 penalty to the readying
action if the weapon is already readied. If the weapon is not yet readied,
it increases the weight of the readying action by 5, and decreases the
weight of the attacking and concentrating actions by 100. If we are
going to change to a better weapon, we should do so before attacking
(to maximise the number of attacks done with the better weapon), and
certainly before we start concentrating. (It is always better to ready a
weapon first and concentrate later, rather than the other way around
– concentration can be broken, readying cannot.)

13. The do not reload weapons that do not use ammo rule is discussed in

44 CHAPTER 2. ATTACK: DETAILED OVERVIEW

subsection 2.8.1.

14. The do not reload weapons that are not empty rule is discussed in sub-
section 2.8.1.

15. The do not reload weapons that cannot be reloaded rule is discussed in
subsection 2.8.1.

16. The do not attack with unloaded weapon rule is discussed in subsection
2.8.1.

17. The reload when you have an unloaded weapon rule is discussed in
subsection 2.8.1.

18. The do not reload weapons that do not use ammo rule is discussed in
subsection 2.8.1.

19. The tension influences attacking rule is discussed in subsection 2.8.2.

20. The randomise the action result rule adds a random number between
0 and 5 to each action in the table, once again to make things more
interesting and less predictable.

2.6.7 Chance to win rules

The final part of the AI are the chance to win rules. A first standard AI
action select rule called the calculate the chance to win rule is ran before any
of the normal standard AI action select rules start doing their calculations.
It does only one thing: consider the chance to win rules.

The effect of the chance to win rules is to set two numbers that vary,
chance-to-win and normalised chance-to-win. The probability of the attacker
hitting the defender with a normal attack is the normalised chance-to-win di-
vided by 10 (or, if you prefer, 10% times the chance-to-win). So a normalised
chance-to-win of 7 indicates a 70% chance of hitting. Since all probabilities
lie between 0% and 100%, normalised chance-to-win lies between 0 and 10.
The chance-to-win is the calculated probability before it had been limited
to the 0 to 10 range. This is useful if you want to know whether the at-
tacker should attempt to make a special attack with a +3 attack bonus; if
the chance-to-win is 0, the answer might be yes; if it is -4, the answer will
certainly be no.

Everything that influences the probability of hitting should have an asso-
ciated chance to win rule, otherwise the AI will not be able to make rational
decisions using full knowledge of the situation.

2.7. WEAPONS 45

The standard chance to win rules set the chance to win to 10 (CTW
default rule); add the melee of the global attacker (CTW melee bonus rule);
subtract the defence of the global defender (CTW defence bonus rule); sub-
tract the best possible defensive action of the global defender (consider best
defender’s action rule); add the attack bonus of the weapon (CTW attack
bonus from weapon rule); and add the attack bonus from tension (CTW
tension bonus rule). Finally, the normalised CTW rule sets the normalised
chance-to-win to a number between 0 and 10.

The special case here is the best defender’s action rule, which calls the
rulebook best defender’s action rules. The idea of this rulebook is to call
all defensive actions, calculate the possible defense bonus of each, and apply
only the best of them. The defender can either dodge or parry, not both;
we need to assume that he chooses the best of these actions, and apply the
bonus associated with it.

In order to do this, standard ATTACK has two best defender’s action
rules : the CTW parry bonus rule and the CTW dodge bonus rule. These rules
calculate the possible parry and dodge bonus respectively, and then write it
to the number that varies best defence if it is higher than the previous best
defense. All new defensive actions should contain a similar best defender’s
action rule!

2.7 Weapons

This part of the source defines the weapon kind and its associated properties;
gives all persons a natural weapon; and defines the readying action.

2.7.1 The weapon kind

A weapon is a kind of thing. (In fact, this has been declared higher up in the
source, in order to prevent errors.) All weapons have five numbers associated
with them:

• The damage die defines the amount of damage the weapon can do. In
standard ATTACK, the damage is a random number between 1 and
the damage die of the weapon. The damage die of a weapon is usually
6.

• The dodgability of a weapon defines what defence bonus a defender
gets when dodging against the weapon. The dodgability of a weapon
is usually 2.

46 CHAPTER 2. ATTACK: DETAILED OVERVIEW

• The passive parry max of a weapon defines the maximum parry bonus
when parrying against this weapon. The passive parry max of a weapon
is usually 2.

• The active parry max of a weapon defines the maximum parry bonus
when parrying with this weapon. The active parry max of a weapon is
usually 2.

• The weapon attack bonus of a weapon defines the bonus to attack rolls
given by the weapon. It is usually 0.

The attack bonus from weapon rule is an attack modifiers rule that applies
(and reports, if the numbers boolean is true) the weapon attack bonus to the
attack roll. The CTW attack bonus from weapon rule is a chance to win rule
that applies the weapon attack bonus to the chance to win calculations.

2.7.2 Readying

Readying is an action applying to one touchable thing. The player triggers
it with the “ready [weapon]” syntax. The action applies to one touchable
thing.

The readying action is governed by four standard rules:

1. A first carry out an actor readying rule called the implicit taking when
readying rule. This rule attempts to take the noun is the player doesn’t
already have it. (ATTACK thus assumes that actors are allowed to take
weapons as a free action. You can of course change this.)

2. A carry out an actor readying rule called the carry out readying when
enclosing rule. This rule checks whether the actor encloses the noun,
and if so, it sets the noun to readied.

3. A last carry out an actor readying rule called the unready all other
weapons rule. If the noun has been readied, this rule cycles through all
other objects enclosed by the actor and unreadies them.

4. A report an actor readying rule called the standard report readying rule.
This rule prints “A readies the B” if the readying was successful. If the
noun is not readied but is enclosed by the actor (this cannot happen
in standard ATTACK) it prints: “A fools around with the B, but fails
to ready it.”. If the noun is neither readied nor enclosed by the actor,
it prints: “A attempts to ready B, but cannot get it.”

2.8. PLUG-INS 47

There are four additional rules that govern readying. The readied in-
ventory listing rule prints “ (readied)” after a readied object in the player’s
inventory. The three rules knows as the unready on dropping rule, the un-
ready on putting on rule and the unready on inserting rule unready a weapon
when it is dropped, put on something, or inserted into something. (ATTACK
makes no assumptions about what happens when a weapon is given to some-
one – which is anyway impossible if the author does not create rules for
it.)

2.7.3 Natural weapons

In order to ensure that every person always has a weapon – which makes a
lot of other code more easy to write – we endow everyone with a “natural
weapon”.

A natural weapon is a kind of weapon. It is part of every person. This
means that it cannot be dropped, and will not show up in room descriptions
or inventory listings. However, it can be examined, e.g., when the player
types “examine my natural weapon”. The standard response is given by the
standard description of a natural weapon rule, which says: “Clenched fists,
kicking feet – that kind of stuff.”.

A natural weapon has the following standard properties: damage die of
3, dodgability of 2, passive parry max of 2, active parry max of 0. (It’s not
really useful if you manage to parry the opponent’s axe with your hand, you
see.)

Finally, there is the ready natural weapons if no other weapon readied rule,
which runs when play begins and every turn thereafter. It cycles through
the alive persons enclosed by the location, and if that person encloses no
readied weapon, it readies the natural weapon of the person. Thus we can
be assured that every person will always have at least one readied weapon.
(He should also have at most one readied weapon, but that is handled by the
rules above.)

2.8 Plug-ins

Plug-ins are parts of code that you can add to your project if you need them.
I hope that at some future point, we will have a large collection of ATTACK
plug-ins. Right now there are two standard plug-ins that come with AT-
TACK: the reloadable weapons plug-in and the tension plug-in. These plug-
ins are standard because it is likely that you will want to use them. However,

48 CHAPTER 2. ATTACK: DETAILED OVERVIEW

the rest of ATTACK does not depend on them and you can comment them
out if you wish.

2.8.1 Reloadable weapons

The reloadable weapons plug-in defines new properties for weapons so that
we can have weapons with ammunition that need to be reloaded once they
are out of ammo. It is also possible to create weapons that run out of charges
but cannot be reloaded – a canister of pepper spray, for instance, or a magic
wand with a limited number of spells.

We first give all weapons four new properties, all of which are numbers
that vary:

• The maximum shots is the amount of attacks that can be performed
with the fully loaded weapon before it runs out of ammo. For a six-
shooter, this would be 6; for a crossbow, it would be 1. The usual
value is 0. Any weapon whose maximum shots is 0 will be treated as a
weapon that does not use ammo.

• The current shots is the amount of attacks that can still be performed
with the weapon before it runs out of ammo. If it drops to 0, the
weapon is out of ammo. The usual value is 0.

• The maximum load time is the amount of reloading actions if takes
to reload the weapon. If the maximum load time is 1, it takes only
1 action to reload the weapon; but if it is 3, it takes 3 actions. As a
special value, a weapon with maximum load time -1 cannot be reloaded
– once it runs out of ammo, it becomes useless. The usual value is 0.

• The current load time is the amount of reloading actions that still has
to be taken. This is only useful for weapons with a maximum load
time higher than 1: we decrease the current load time by 1 for each
reloading action, and once the current load time equals 0, the weapon
is reloaded. The usual value is 0.

We also define that a weapon is unloaded if its current shots is 0, but its
maximum shots is not 0.

Furthermore, we define four text properties for every weapon: the shots
text, which is usually “shots”; the reload text, which is usually “reload”; the
reload stem text, which is usually “reload”; and the out of ammo text, which is
usually “You pull the trigger, but nothing happens – you’re out of ammo!”.
These texts are useful because not all weapons using ammunition can be

2.8. PLUG-INS 49

described with the same words. A crossbow has “arrows”, not “shots”; a laser
gun has “charges”, not “shots”, and is “recharged” rather than “reloaded”.

The perhaps somewhat cryptic reload stem text should contain that part
of the reloading verb after which we can put “-ed” to get the past tense or
“-ing” to get the gerund. Thus, for the laser gun just mentioned, the reload
text should be “recharge”, and the reload stem text should be “recharg”.

Now we define three rules that show and govern te use of ammunition:

• The show ammo in inventory rule prints text showing the amount of
ammo in a weapon when inventory is taken; this text either has the
form “ (x of y shots left)” or “ (no ammo; r rounds to reload)” or “
(no shots left; cannot be reloaded)”. In these phrased, “shots” and
“reload” are exhanged for the shots text and the reload (stem) text
of the weapon respectively. (And of course, nothing is printed if the
maximum shots of the weapon is 0.)

• An aftereffects rule called the decrease ammo rule decreases the current
shots of the weapon used by the global attacker by 1. (Unless the
maximum shots of the weapon is 0.)

• A check attacking rule called the cannot attack when out of ammo
rule prints “You pull the trigger, but nothing happens – you’re out of
ammo!” when the weapon is, in fact, out of ammo. (If you have set the
weapon’s out of ammo text to something different, that gets printed
instead.) Unlike most check rule failures, this one does not count as
acting fast – aiming and pulling a trigger takes a round, and makes for
a cool if somewhat humiliating waste of the player’s round.

We then define the reloading action, which applies to one carried weapon
and is triggered by the “reload A” syntax. We tell the parser that it is very
likely that the player wishes to reload an unloaded readied weapon enclosed
by him; and likely that he wishes to reload an unloaded weapon enclosed by
him. Thus, you can generally just type “reload”.

The reloading action is goverend by six rules: three check rules, two carry
out rules, and a report rule.

• A check reloading rule called the cannot reload weapons that use no
ammo rule checks whether the maximum shots of the weapon is differ-
ent from 0. If not, it takes no time and tells the player that the weapon
does not use ammunition.

50 CHAPTER 2. ATTACK: DETAILED OVERVIEW

• A check reloading rule called the cannot reload unreloadable weapons
rule checks whether the maximum load time of the noun is -1. If it is,
it is one of those special weapons that cannot be reloaded. The game
takes no time and tells the player that the weapon cannot be reloaded.

• A check reloading rule called the cannot reload fully loaded weapons rule
checks whether the current shots is equal to the maximum shots. If it
is, no time is taken and the player is told that the weapon is already
fully loaded.

• A carry out reloading rule called the ready upon reloading rule readies
the weapon that is about to be reloaded. Thus, in standard ATTACK,
reloading gives you a free ready action. If you don’t want this, just tell
Inform that this rule is not listed in any rulebook.

• A carry out reloading rule called the standard carry out reloading rule
decreases the current load time of the noun by 1. If this makes the
current load time less than 1, it resets the current load time to the
maximum load time and the current shots to the maximum shots – the
weapon is now fully loaded.

• A report reloading rule called the standard report reloading rule tells
us that the actor has reloaded his weapon. If the reload time is more
than 1, we are instead told that the actor has started (first round),
continued (subsequent) rounds, or finished (last round) reloading.

Finally, we need to define the AI behaviour for reloadable weapons. This
influences both the choice of a weapon, and the choice of an action. We
deal with choosing a weapon first, by defining the following two standard AI
weapon select rules :

• The do not choose an empty weapon that cannot be reloaded rule gives a
-1000 penalty to any weapon that uses ammo, is empty, but cannot be
reloaded. Such a weapon has become useless and should not be chosen.

• The do not prefer weapons that need to be reloaded rule only runs for
weapons that use ammo, and are either out of shots or not readied
– these weapons, after all, are the ones that we have to invest time
in before we can use them. We then calculate how much time we
will be wasting when we use this weapon, and apply an appropriate
penalty. (The mathematics are somewhat complicated, but the source
code contains examples.)

2.8. PLUG-INS 51

Now we need rules that will allow the AI to choose when to reload a
weapon. Standard ATTACK contains seven of these rules in the standard AI
action select rulebook :

• The consider reloading rule runs first, and adds the action of the global
attacker reloading the stored weapon to the Table of AI Combat Op-
tions.

• The do not reload weapons that do not use ammo rule gives a -1000
penalty to the reloading of weapons that do not use ammunition (whose
maximum shots is 0).

• The do not reload weapons that are not empty rule gives a -100 penalty
to the reloading of weapons that are not empty (whose current shots
is not 0).

• The do not reload weapons that cannot be reloaded rule gives a -1000
penalty to the reloading of weapons that cannot be reloaded (whose
maximum load time is -1).

• The do not attack with unloaded weapon rule gives a -1000 penalty to
attacking with a weapon that must be loaded (maximum shots is not
0) but is not loaded (current shots is 0).

• The do not concentrate with unloaded weapon rule gives a -100 penalty
to concentrating if the stored weapon must be reloaded (same circum-
stances as previous rule).

• The reload when you have an unloaded weapon rule gives a +5 bonus to
reloading the stored weapon if it must be reloaded (same circumstances
as previous two rules).

2.8.2 Tension

The tension plug-in provides a system that will keep combat fast and inter-
esting even when defence ratings are high compared to attack ratings, and
that creates a natural ebb and flow of tension during the combat. Almost
any game will benefit from it, which is why it is a standard plug-in. Tension
is a kind of ‘drama manager’ for combat: it makes sure that long periods in
which no apparent progress is made – that is, in which no damage is done
– are not experienced as boring, but rather as increasing the tension. The
way it works is that every turn when no hit is scored, the tension (a number
that varies) is increased by one. High tension gives everyone bonuses on the

52 CHAPTER 2. ATTACK: DETAILED OVERVIEW

attack roll, thus increasing the likelihood that something will happen, and
on the damage roll, thus increasing the stakes.

Tension also works as a check and balance on the combat system: if
you have made it too hard for people to hit each other, tension will greatly
alleviate this problem.

Tension is implemented using six rules:

• An every turn rule called the standard increase or reset the tension rule
increases the tension by 1 (to a maximum of 20) if hate is present, and
sets the tension to 0 otherwise.

• An attack modifiers rule called the standard tension attack modifier
rule adds one half (rounded down) of the current tension to the attack
bonus.

• A damage modifiers rule called the standard tension damage modifier
rule adds one third the tension to the damage modifier.

• An aftereffects rule called the standard reduce tension after hit rule
reduces the tension when the final damage of an attack was greater
than 0. The tension is not necessarily reduced to 0; rather, the new
tension is 80% of (the old tension - 4), with a minimum of 0. Check
the source code for a table that spells it out in detail.

• A chance to win rule called the CTW tension bonus rule increases the
chance-to-win by the tension divided by 2 (thus giving the AI accurate
information about how tension modifies the attack bonus).

• A standard AI action select rule called the tension influences attack-
ing rule increases the weight of the attacking action by the tension
divided by 4. (The previous rule also increases the weight of attacking;
the current rule adds some extra weight because tension also increases
damage.)

Chapter 3

Examples and recipes

3.1 Worked example: a simple dungeon

3.1.1 First blood

Once we have added ATTACK to our project, we can start a fight very easily.
The following code suffices:

The cave is a room. The player is in the cave.

The health of the player is 20.

A mace is a kind of weapon. The player carries a mace.

The goblin is in the cave. The goblin is hostile.

The goblin carries a mace. The melee of the goblin is -1.

The player should be able to win this fight easily (especially if he does
not forget to ready his mace): a person usually has a health of 10 and a
melee of 0, so we have given the player a health bonus of 10 and the goblin
an attack penalty of -1. We have left all the rest of the statistics, including
all the statistics of the weapon, at their default values.

3.1.2 Custom weapons

Instead of writing “the player carries a mace”, we might want to give the
player a custom weapon. And, since this is the start of a typical dungeon
crawl, we want to give him a crappy weapon.

The unwieldy mace is a mace. The unwieldy mace is readied.

53

54 CHAPTER 3. EXAMPLES AND RECIPES

The weapon attack bonus of the unwieldy mace is -1.

The player carries the unwieldy mace.

Since the default weapon attack bonus of a weapon is 0, this mace is
slightly but significantly worse. However, we did make the mace ‘read-
ied’, which means that the player doesn’t have to spend a turn readying
the weapon.

We have also implemented our first reward: the player can loot the gob-
lin’s corpse for the mace. Of course, this will lead to disambiguation problems
between the mace and the unwieldy mace, so let’s rename the goblin’s mace:

The goblin carries a mace called the goblin’s mace.

3.1.3 Simple prose

What fun is fighting a goblin if you just get the standard prose generation
of ATTACK? We’d better customise it a bit, although we’re going to keep
everything quite simple for now. Let’s start with a custom message for the
goblin’s death:

A fatal flavour rule (this is the fatal goblin rule):

if the global defender is the goblin:

say "[if the global attacker weapon is a mace]With a

sweeping blow, [possessive of the global attacker] mace

smashes into the goblin’s head[otherwise][The global

attacker] land[s] a furious blow on the goblin’s head

[end if], ending its beastly existence. Wow! A kill!

You feel powerful.[run paragraph on]";

rule succeeds.

I would implore you to always write prose generation rules without precon-
ceptions about which event might trigger them. In the game as we have
written it now, only the player can kill the goblin; so we might be tempted
to drop all that talk about “the global attacker”. But we should never give
in to such temptations, for that way lie horrendous bugs. (Just imagine what
would happen if you later decide to give the player a summoning spell.)

Now, a rule for when the player is killed by the goblin:

A fatal player flavour rule (this is the fatal player goblin

rule):

if the global attacker is the goblin:

say "Impossible! You stare in disbelief as the goblin

3.1. WORKED EXAMPLE: A SIMPLE DUNGEON 55

[if the global attacker weapon is a mace]’s mace moves

towards your face, unstoppable and unstopped[otherwise]

hits you square between the eyes[end if], ending all

your dreams of fame and treasure.[paragraph break]

Killed by the first goblin in the first room of the

dungeon. If only you had listened to your mother.";

rule succeeds.

Next, a rule for when the goblin attacks the player. (This is printed before
the player gets to react.) Since this message will be seen multiple times, we’ll
put some randomness in it.

An attack move flavour rule (this is the goblin attacks rule):

if the global attacker is the goblin:

say "[one of]The[or]Smiling wickedly, the[or]With a

scream, the[or]Just when you notice your shoe laces

are untied, the[as decreasingly likely outcomes]

goblin [one of]jumps forward to attack[or]attacks[or]

advances towards[at random] [the global defender].";

rule succeeds.

Now we move on to the normal hits and misses. I’ll write one rule that
fires when the goblin is the defender and the player is the attacker; and
another rule which fires when the goblin is the attacker (independent of who
is the defender). This is a good scheme to follow – it means that all prose
will be specific to the current monster, while not forcing you to write rules
for every possible combination of attackers and defenders.

A flavour rule (this is the goblin defender flavour rule):

if the global defender is the goblin and the global attacker

is the player:

if the final damage is greater than 0:

say "You score a [if the final damage is greater than

3]brilliant [end if]hit against the goblin[if the

final damage is greater than 2], who screams in pain

[end if]![run paragraph on]";

rule succeeds;

otherwise:

say "[if the goblin is at dodge]The goblin dances out

of the way of your clumsy blow[otherwise if the

goblin is at parry]The goblin stops your attack

56 CHAPTER 3. EXAMPLES AND RECIPES

with his weapon[otherwise]You attack, but... a

miss! How unseemly[end if].[run paragraph on]";

rule succeeds.

Notice how we can change the text displayed based on the amount of damage
done, and also how we can change it based on whether the goblin did or did
not parry/dodge.

A flavour rule (this is the goblin attacker flavour rule):

if the global attacker is the goblin:

if the final damage is greater than 0:

say "The horrible little creature manages to hit you

[one of]in the stomach, sending you reeling[or]on

your left leg[or]on your behind when you try a fancy

Star Wars move[at random].[run paragraph on]";

rule succeeds;

otherwise:

say "[if the player is at dodge]You easily avoid the

goblin’s flimsy attacks[otherwise if the player is

at parry]Clang! You sweep away your enemy’s attack

and move in for the kill[otherwise]’You’ll never get

me, hellspawn!’, you cry as the yellow demon

unsuccessfully attempts to end your life[end if].

[run paragraph on]";

rule succeeds.

This is already starting to look good – assuming we want to write a
somewhat silly dungeon crawl, of course, but all I’m interested in right now
is to show you how this stuff works. A few more prose rules should be added
to get an even better effect. First, epsecially since we are changing our miss
texts based on whether the goblin parried or dodged, we may not want to
announce these reactions when they are decided on. (Just run the game, and
you’ll see what I mean.) So let’s add the following:

Report an actor parrying (this is the do not report goblin

parry rule):

if the actor is the goblin:

rule succeeds.

Report an actor dodging (this is the do not report goblin

dodge rule):

if the actor is the goblin:

rule succeeds.

3.1. WORKED EXAMPLE: A SIMPLE DUNGEON 57

Finally, we may want to spice up the text shown when the goblin concen-
trates.

Report an actor concentrating (this is the goblin concentrating

prose rule):

if the actor is the goblin:

now the global actor is the actor;

if the concentration of the actor is 1, say "The goblin

starts chanting in a low voice.";

if the concentration of the actor is 2, say "The goblin’s

chant rises in volume[one of]--he sounds like a shaman

you once saw on Discovery[or][stopping].";

if the concentration of the actor is 3, say "The goblin’s

entrancing song rises to a feverish pitch; his eyes

shine with demonic purpose.";

rule succeeds.

And to have an appropriate message when we break the goblin’s concen-
tration by hitting him:

Lose concentration prose rule (this is the goblin

lose concentration prose rule):

if the concentration loser is the goblin:

say " The goblin’s [bold type]trance[roman type] is

broken![run paragraph on]";

rule succeeds.

Notice that everywhere in this section, we used rules – which can in
principle be made to do anything. Absolutely nothing is stopping you from
having the villain say something about the current weapon of the player when
the villain’s health has dropped below half its normal value, for instance.

To round out our prose improvement process, let us turn off the numerical
results:

When play begins:

now the numbers boolean is false.

3.1.4 Killing the player

One weird thing about our adventure is that once the player is killed, the
game doesn’t stop. ATTACK doesn’t automatically end the game once the
player’s health drops below 0, because different authors might want very

58 CHAPTER 3. EXAMPLES AND RECIPES

different things to happen. If we just want to stop the game, we can do the
following:

Every turn (this is the player death rule):

if the player is killed:

end the game saying "You were killed by [the global

attacker].".

3.1.5 Movement and retreat

Of course, a one-room game is a little limited. So let’s have:

Small cavern is north of cave.

The player will now be able to go to the small cavern whenever he likes –
even when the goblin is still alive. This may not be desirable, so we’ll add:

Before going (this is the cannot go when in a fight rule):

if hate is present:

take no time;

say "You cannot abandon a fight so easily!" instead.

But perhaps that is a little harsh – the player will never be able to leave a
fight, so if he ever blunders into something he can’t handle, he’ll be doomed.
Let’s try our hand at making a new action: retreating. When the player
retreats, he is moved to his previous location. . . but only after everyone in
the location who presses him or is pressed by him has made a free against
him. (We could also have everyone who hates the player make a free attack
against them, with far deadlier results. In the rules I give below, you can
still retreat safely if your enemies have not yet attacked you and you have
not yet attacked them.)

To make this easier to test, we’ll also add a new location to our example
game.

Grassy meadow is a room. "The cave gapes to the north."

The player is in grassy meadow.

Cave is north of grassy meadow.

Retreating is an action applying to nothing.

Understand "retreat" and "flee" as retreating.

A person is either retreater or not retreater.

A person is usually not retreater.

3.1. WORKED EXAMPLE: A SIMPLE DUNGEON 59

I’ll explain those last two lines in a minute. For now, we need to store the
location to which the player will retreat when he types “retreat”.

The retreat location is a room that varies.

The retreat location is Grassy meadow.

First carry out going (this is the set retreat location rule):

now the retreat location is the location.

which insures that the retreat location is set at the start of the game, and
sets it anew after every going action. Note that retreating itself will not set
a new retreat location – which is as it should be, since you can hardly retreat
back to a fight after retreating from it. Note also that if we do any fancy stuff
with movement in our game, we might need to think about how it interacts
with retreating.

We now need to add some check rules to retreating:

Check retreating (this is the cannot retreat when in the

retreat location rule):

if the retreat location is the location:

take no time;

say "You cannot retreat now." instead.

Check retreating (this is the cannot retreat when there are no

enemies rule):

if not hate is present:

say "There’s nothing here to retreat from." instead.

Check retreating (this is the cannot retreat as reaction rule):

if the combat state of the player is not Act:

take no time;

say "You cannot retreat as a reaction--try to survive and

run away on your own turn." instead.

which ensure that you cannot retreat to the location you are already in; that
you cannot retreat when there are no enemies to retreat from; and that you
cannot retreat when you are reacting to someone else’s action – you have to
wait for your own turn. And last but rather essentially, here is the rule that
carries out retreating:

Carry out retreating (this is the standard carry out retreat

rule):

60 CHAPTER 3. EXAMPLES AND RECIPES

say "Deciding that discretion is the better part of valour,

you bravely run away.";

now the player is retreater;

repeat with X running through alive persons in the location:

if the player is alive:

if X presses the player or the player presses X:

now X does not press the player;

now the player does not press X;

if the faction of X hates the faction of the player:

make X strike a blow against the player;

if the player is alive, move the player to the retreat

location;

now the player is not retreater.

We remove all pressing relations (which is good, since otherwise they would
be remembered for the next fight, which is illogical) and make every person
who hates the player and either presses him or is pressed by him strike a blow.
If they fail to kill him, the player is transported to the retreat location, where
Inform’s standard rules kick in to print a room description.

So far so good, but what about that “retreater” / “not retreater” busi-
ness? Well, having a variable we can check to see whether the player is
retreating allows us to have special rules for blows struck when retreating.
Think of a slow ooze monster that has a -4 penalty when striking a retreat-
ing character, of a many-tentacled horror that strikes with a +10 bonus, or
simply of a nice magic item:

The boots of expeditious retreat are in grassy meadow.

They are wearable and plural-named.

The indefinite article is "the".

An attack modifiers rule (this is the boots of expeditious

retreat grant better retreat rule):

if the global defender is the player and the player is

retreater:

if the player wears the boots of expeditious retreat:

if the numbers boolean is true, say " - 2 (boots of

expeditious retreat)[run paragraph on]";

decrease the to-hit modifier by 2.

These boots will certainly come in handy, since they give the player a +2
defence bonus when he is retreating.

3.1. WORKED EXAMPLE: A SIMPLE DUNGEON 61

3.1.6 Simple AI tweaks

So, the player can retreat, kill the goblin, get a better weapon – let’s add
some enemies to the small cavern on which he can use that better weapon.
And what better enemies than frog warriors?

A frog warrior is a kind of person.

A frog warrior is usually hostile.

The health of a frog warrior is usually 4.

The melee of a frog warrior is usually -2.

The defence of a frog warrior is usually 7.

A small frog spear is a kind of weapon.

Every frog warrior carries a small frog spear.

The damage die of a small frog spear is usually 2.

These creatures really are puny – with only 4 (instead of 10) health, a large
attack penalty, and an incredibly bad weapon. So we had better put a lot of
them in the cavern:

A frog warrior called the frog commander is in the Small

cavern.

A frog warrior called the limping frog warrior is in the Small

cavern.

A frog warrior called the stout frog warrior is in the Small

cavern.

A frog warrior called the old frog warrior is in the Small

cavern.

A frog warrior called the bright green frog warrior is in the

Small cavern.

The prose generated by five of these creatures will be of a horrendous repet-
itiveness, so if this were a real game, we would absolutely have to customise
it heavily – preferably, with different prose for the five individuals. (Nobody
said writing interactive fiction was easy, did they?) But we’ve already seen
how to do that, so I won’t be spending time on that now.

Now the weapon I’ve given these frog warriors is so bad that they may
well start preferring their natural weapon, which is not what I want – and
which leads to incomprehensible prose as well. So let’s add an AI rule that
will ensure that frog warriors use their spears:

Standard AI weapon select rule (this is the frogs use spears

62 CHAPTER 3. EXAMPLES AND RECIPES

rule):

choose row stored_row in Table of AI Combat Weapon

Options;

if the Weapon Option entry is a small frog spear:

if the global attacker is a frog warrior:

increase the Weight entry by 100.

And now for the really interesting stuff. Let’s make those frog warriors
dangerous and special by giving them a great love of concentrating. Individ-
ually, they may be weak, but imagine what they can do when all five of them
are spending their turns concentrating, and the player cannot possibly hope
to break the concentration of each of them before they can attack him with
very nasty bonuses.

Standard AI action select rule (this is the frogs love

concentrating rule):

choose row with an Option of the action of the global

attacker concentrating in the Table of AI Combat Options;

if the global attacker is a frog warrior:

increase the Weight entry by 5.

And again, if this were a real game, we would have to spend time on the
prose generated by all those concentration actions.

3.1.7 Special ability: shout

In fact, we may have made those frog warriors a bit too good. How can the
player possibly hope to defeat them? Well, that’s going to be difficult, unless
we give him some help. So what about this – a special action, shouting,
that can be performed both as an action and as a reaction, and that has a
probability of breaking the concentration of anyone who hears it?

Shouting is an action applying to nothing.

Understand "shout" as shouting.

The shout-victims is a list of persons that varies.

Carry out shouting (this is the standard shouting rule):

now the concentration of the player is 0;

truncate shout-victims to 0 entries;

repeat with X running through alive persons enclosed by the

location:

3.1. WORKED EXAMPLE: A SIMPLE DUNGEON 63

if the concentration of X is not 0:

if a random chance of 1 in 2 succeeds:

now the concentration of X is 0;

add X to shout-victims;

say "’[one of]BWAAH[or]BLEH[or]GRAAH[or]WRUGH[at random]!’,

you shout as loudly as you can. [if the number of entries

in shout-victims is 0]Unfortunately, nobody is very

impressed[otherwise if the number of entries in

shout-victims is 1]This startles [shout-victims with

definite articles] so much that [it-they] lose[s]

concentration[otherwise]This startles [shout-victims with

definite articles] so much that they lose concentration

[end if].".

This should certainly help, but it’s still not easy. Furthermore, if the
player was wounded by the goblin, it will be much harder indeed. And what
use is retreating if you cannot heal yourself once you’ve left combat? So
without further ado, we come to. . .

3.1.8 Healing the player

When the player has health and can be damaged, you’ll want to add a mecha-
nism to your game that allows him to replenish his health. Some well-known
ways to do this are:

1. Health slowly regenerates.

2. Health can be replenished with one-use items (health potions, medikits
– and I am suddenly reminded of Redneck Rampage’s innovative use of
whiskey).

3. The player has special abilities that allow him to heal himself and others
(magic spells are always popular).

4. The player can heal himself by getting to a certain place.

5. Health is fully regained after every fight.

6. The player gets health from hitting or killing enemies.

Although they are perhaps not the most common, I would recommend think-
ing about the last two options for your game. Both of them decrease the time
spent on healing, and thus increase the time spent on stuff that is probably

64 CHAPTER 3. EXAMPLES AND RECIPES

more fun. Another option, well-suited to interactive fiction, is to integreate
healing with your story. However, for the current game we will implement
option 2 and option 4.

Let’s start with option 4. We want to give the player some way of fully
healing himself when he gets back to the grassy meadow – this will mean
that if you manage to retreat, you can always get back to strength. But this
rewards the kind of hit-and-run tactic where you dash into a room, deal a
small amount of damage to your enemy, dash back out, heal, and do it all
again until he dies; which is not fun. So we’ll make it so that everyone who is
still alive gets healed. (This means that hit-and-run can still work, but only
against multiple enemies and if you manage to kill at least one of them.)

The shrine is in Grassy meadow. It is fixed in place.

Instead of examining the shrine:

say "If you pray in this location, the world’s wounds will

be healed.".

Praying is an action applying to nothing.

Understand "pray" as praying.

Carry out praying (this is the pray in grassy meadow rule):

if the location is the Grassy Meadow:

say "God’s blessing descends onto the world, healing

friend and foe alike.";

repeat with X running through alive persons:

fully heal X;

rule succeeds.

Last carry out praying (this is the pray somewhere else rule):

say "Words without thoughts never to heaven go.".

Notice that we have set the praying action up in such a way that we can
easily add other locations where praying does something interesting. Now
we will add some health potions:

A health potion is a kind of thing.

Instead of drinking a health potion:

heal the player for 6 health;

say "You drink the health potion, [if the healed amount is

3.1. WORKED EXAMPLE: A SIMPLE DUNGEON 65

0]but you were already at full health[otherwise if the

health of the player is less than the permanent health of

the player]partially restoring your health[otherwise]

restoring your health[end if].";

if the combat state of the player is react:

now the player is adrinking.

The player carries 3 health potions.

The last two lines of that instead-rule make it possible to ensure that al-
though (a) drinking a potion can be done as a reaction, nevertheless (b) this
will (realistically) give a penalty to your defence against the attack you are
reacting to. Here’s the code to implement that:

A person can be either adrinking or not adrinking.

A person is usually not adrinking.

An attack modifiers rule (this is the drinking is not a good

defence rule):

if the global defender is adrinking:

if the numbers boolean is true, say " + 2 (defender

drinking a potion)[run paragraph on]";

increase the to-hit modifier by 2.

A take away until attack circumstances rule (this is the

defender no longer adrinking rule):

now the global defender is not adrinking.

With these additions, the fight with the frogs has become much more
managable. (I just managed to win it. Shouting is great.) But one thing is
missing – a way for the player to see how healthy he or she is. There are
again many ways to do this, but perhaps one of the best is to show it in the
status bar. Here is an implementation:

Include Basic Screen Effects by Emily Short.

Table of Fancy Status

left central right

"[bold type][location of the player][roman type]" ""

"Score: [score]/100"

"You [harm status], and armed with [a random readied weapon

66 CHAPTER 3. EXAMPLES AND RECIPES

enclosed by the player]." "" ""

Rule for constructing the status line:

fill status bar with Table of Fancy Status;

rule succeeds.

To say harm status:

if the numbers boolean is false:

say "are ";

let n be 10 times the health of the player;

now n is n divided by the permanent health of the player;

if n is:

-- 10: say "unharmed";

-- 9: say "scratched";

-- 8: say "lightly wounded";

-- 7: say "wounded";

-- 6: say "wounded";

-- 5: say "severely wounded";

-- 4: say "severely wounded";

-- 3: say "[bold type]bleeding copiously[roman type]";

-- 2: say "[bold type]losing limbs[roman type]";

-- otherwise: say "[bold type]dying[roman type]";

otherwise:

say "are at [health of the player] of [permanent health

of the player] health".

which will appropriately print either prose or numbers to the status bar
depending on whether numbers have been turned on or off. You can obviously
do many other thing with the status bar as well, and a game heavy on combat
might want to put a lot of information in it.

3.1.9 A blade in the dark

So, once we have defeated the frogs, we should be rewarded with some nice
items. Let’s have a treasure chest, and let’s make it so that it cannot be
opened while the frogs are alive:

The treasure chest is in small cavern.

It is fixed in place, container, closed and openable.

Check opening the treasure chest (this is the cannot open

3.1. WORKED EXAMPLE: A SIMPLE DUNGEON 67

chest in combat rule):

if hate is present:

take no time;

say "Not in the presence of enemies!" instead.

The first item we’ll put in the chest is another weapon: a dagger. This is
a good opportunity to define another kind of weapon, and show how we can
make weapon choice more interesting.

A dagger is a kind of weapon.

The damage die of a dagger is usually 2.

The weapon attack bonus of a dagger is usually -2.

The dodgability of a dagger is usually 3.

The passive parry max of a dagger is usually 1.

The active parry max of a dagger is usually 1.

The gilded dagger is a dagger.

The gilded dagger is in the treasure chest.

Of course, the dagger kind we just created is simply terrible. Why would
anyone want to use it? Well, we’re going to add the following two rules:

An attack modifiers rule (this is the dagger extra tension

attack bonus rule):

if the global attacker weapon is a dagger:

let n be 0;

now n is the tension divided by 2;

if n is not 0:

if the numbers boolean is true, say " + ", n, "

(dagger benefits from tension)[run paragraph on]";

increase the to-hit modifier by n.

A damage modifiers rule (this is the dagger extra tension

damage bonus rule):

if the global attacker weapon is a dagger:

let n be 0;

now n is the tension divided by 3;

if n is not 0:

if the numbers boolean is true, say " + ", n, "

(dagger benefits from tension)[run paragraph on]";

increase the damage modifier by n.

68 CHAPTER 3. EXAMPLES AND RECIPES

which double the total bonus tension gives to the attack roll and damage
roll made with a dagger. Since tension bonuses can get very high if no hit is
scored for a long time (up to a maximum of a +10 attack and +6 damage
modifier), the benefit given by these two rules might easily outweigh the
weaknesses of the dagger kind. More interestingly, if you use a dagger, you
must use different tactics – more defensive, eluding your opponent until the
tension has built up to such heights that you can deliver a single extremely
effective attack. Which is what fighting with a dagger against people with
maces and swords must be like – mostly trying not to get hit, until you get
the right opportunity and can stick your blade into the enemy’s weak spot.

If we are going to use tension to such an extent, we might as well show
it in the status bar. We replace the previous table with:

Table of Fancy Status

left central right

"[bold type][location of the player][roman type]"

"Tension: [tension]" "Score: [score]/100"

"You [harm status], and armed with [a random readied weapon

enclosed by the player]." "" ""

and then define:

To say tension:

if the numbers boolean is true:

say tension;

otherwise:

if tension is greater than 15:

say "very high";

if tension is greater than 10 and tension is less than

16:

say "high";

if tension is greater than 5 and tension is less than 11:

say "moderate";

if tension is less than 6:

say "low".

Well, let’s go all the way towards the classic rogue character, shall we?
We will give the player a new item that will give him some chance of entering
new locations unseen; he will then be able to concentrate and let the tension
rise, and suddenly strike from the dark. With a certain probability of being
seen every turn, of course – just to keep things interesting.

3.1. WORKED EXAMPLE: A SIMPLE DUNGEON 69

The cloak of shadows is in the treasure chest. It is wearable.

A person is either shadowed or not shadowed.

A person is usually not shadowed.

First standard_attacker rule (this is the do nothing when all

enemies shadowed rule):

let p be false;

let q be false;

repeat with X running through all alive persons enclosed by

the location:

if the faction of the global attacker hates the faction

of X:

now p is true;

if X is not shadowed:

now q is true;

if p is true and q is false:

say "[CAP-attacker] [one of]remains unaware of your

presence[or]looks around suspiciously[or]sighs in

boredom[as decreasingly likely outcomes].";

rule succeeds.

In this example, p becomes true if there is at least one person the global
attacker hates, and q becomes true if at least one of those persons is not
shadowed. So p is true and q is false if the global attacker is in the presence
of enemies, all of whom are hidden.

Now we need to make sure that the player actually gets shadowed when
wearing the cloak, and stops being shadowed when he attacks.

Every turn when the player wears the cloak of shadows (this is

the blend into shadows rule):

if not hate is present:

if the player is not shadowed:

now the player is shadowed;

say "You blend into the shadows.";

An aftereffects rule (this is the attacking breaks shadowed

rule):

if the global attacker is the player:

now the player is not shadowed.

70 CHAPTER 3. EXAMPLES AND RECIPES

And now, we add the possibility of detection. We will use a rulebook
to allow for greater customisation – monsters with exceptional perception,
items improving the player’s sneaky skills, different levels of light for different
rooms or different times of day, and so on.

The detection probability is a number that varies.

The detection rules are a rulebook.

Every turn when the player is shadowed (this is the possible

detection rule):

if hate is present:

consider the detection rules;

let n be a random number between 1 and 100;

if the detection probability is greater than n:

now the player is not shadowed;

say "You have been detected!";

now the detection probability is 0.

A detection rule (this is the standard probability of

detection rule):

increase the detection probability by 6.

A detection rule (this is the tension increases probability of

detection rule):

increase the detection probability by the tension divided

by 2.

These rules give the player a 5% chance of being seen, and the chance slowly
gets higher as the tension grows. The player has approximately 50% chance
of remaining undetected until the tension rises to 9.

By the way, since being able to concentrate while remaining hidden is a
far too powerful ability, we add:

Check concentrating (this is the cannot concentrate

while shadowed rule):

if the player is shadowed:

take no time;

say "You need all your concentration just to stay

hidden." instead.

3.1. WORKED EXAMPLE: A SIMPLE DUNGEON 71

3.1.10 Monster with special abilities

All we need is a suitable victim for our new-found powers. What about a
large troll, and one that can heal itself to boot?

Troll lair is north of small cavern.

A large troll is in troll lair. The large toll is a person.

The large troll is hostile.

The health of the large troll is 30.

The defence of the large troll is 8.

The large troll carries a huge club.

The huge club is a weapon.

The damage die of the huge club is 10.

The dodgability of the huge club is 5.

The passive parry max of the huge club is 0.

The active parry max of the huge club is 2.

I’m imagining this troll as a slow and clumsy beast, but one whose attack
pack some truly serious punch when he manages to hit. Right now the club
does between 1 and 10 damage; let’s raise that to between 4 and 13. And let
us ensure that the player cannot use this weapon.

Damage modifiers rule (this is the more damage from club rule):

if the global attacker weapon is the huge club:

increase the damage modifier by 3;

if the numbers boolean is true:

say " + 3 (huge club)[run paragraph on]".

Check readying the huge club:

say "It’s far too massive for you to use in combat."

instead.

That the troll is clumsy can already be seen from the large dodgability
of the huge club, but this alone just makes him a bad fighter. What we need
is increased danger, increased unpredictability. What we need is a random
attack bonus.

An attack modifiers rule (this is the troll attack bonus rule):

if the global attacker is the large troll:

72 CHAPTER 3. EXAMPLES AND RECIPES

let n be a random number between -4 and 10;

increase the to-hit modifier by n;

if the numbers boolean is true and n is greater than 0:

say " + ", n, " (random troll bonus)[run paragraph

on]";

if the numbers boolean is true and n is less than 0:

say " - ", 0 minus n, " (random troll bonus)[run

paragraph on]".

Furthermore, we need to signal the AI that because of the random troll
bonus, the troll can hit even when the odds seem unsurmountable. We’ll
do two things. First, we add a random modifier to the troll’s estimation
of his own ability to hit – this random number can be very different from
the actual attack modifier, but that’s just so the troll doesn’t have perfect
knowledge of the future. Second, we slightly increase the troll’s preference
for attacking. Both of these rules have the effect that the troll attacks more
and concentrates less (which is what I want).

Chance to win rule (this is the troll CTW rule):

increase the chance-to-win by a random number between -4

and 10.

A standard AI action select rule (this is the troll attack

select rule):

choose row with an Option of the action of the global

attacker attacking the global defender in the Table of AI

Combat Options;

increase the Weight entry by 2.

Now, for some added fun, we are going to add a special action for the
troll. Trolls famously regenerate (at least they famously do so in Dungeons
& Dragons and Heroes of Might & Magic), so let us imagine a troll that can
heal its own wounds by covering them with its own magical slime. (If we
made a larger game, this would be the point where the player could gather
troll slime, one of seventeen ingredients needed to save the dying king.)

Slime-healing is an action applying to nothing.

Carry out the large troll slime-healing:

say "The troll drools large amounts of slime over its arms,

chest and leg. Wherever the slime touches its wounds, they

close and apparently heal.";

heal the large troll for 5 health.

3.1. WORKED EXAMPLE: A SIMPLE DUNGEON 73

This should be obvious enough: we give a description of the action, and
have it heal the troll for a certain amount of damage. But now we need the
troll to consider this action. In order to have it do so, we need a first standard
AI action select rule:

First standard AI action select rule (this is the consider

slime-healing rule):

choose a blank Row in the Table of AI Combat Options;

change the Option entry to the action of the global attacker

slime-healing;

change the Weight entry to -1000.

Every new action that the AI can consider should have one such rule. The
Weight entry given here is exceedingly low to ensure that unless something
intervenes, no NPC will choose this action. (We generally give -100 to an
action that would be pointless for an NPC to perform, and -1000 to an action
that would be impossible for an NPC to perform. Normal NPC cannot use
slime-healing, so we choose -1000.) In the case of the troll, we need something
to intervene:

Standard AI action select rule (this is the only the troll

considers slime-healing rule):

choose row with an Option of the action of the global

attacker slime-healing in the Table of AI Combat Options;

if the global attacker is the large troll:

change the Weight entry to 15;

decrease the Weight entry by the health of the large

troll.

Standard AI action select rule (this is the trolls heals only

20 percent of the time rule):

choose row with an Option of the action of the global

attacker slime-healing in the Table of AI Combat Options;

if a random chance of 4 in 5 succeeds, decrease the weight

entry by 100;

Standard AI action select rule (this is the troll doesnt heal

when player almost dead rule):

choose row with an Option of the action of the global

attacker slime-healing in the Table of AI Combat Options;

if the health of the global defender is less than 8:

74 CHAPTER 3. EXAMPLES AND RECIPES

decrease the weight entry by 8 minus the health of the

global defender.

For the most part, these AI rules should be obvious enough. We want the
troll to use its healing ability when it is wounded, so we give the healing a
weight of (15 - health of the troll), which starts out at -15 and then slowly
rises to 14 as the troll’s health goes down. We also decrease the weight of
the action if the global defender (in our game always the player, since he is
the only opponent of the troll) is very low on health – in that case, the troll
ought to prefer simply attempting a fatal blow.

Perhaps less obvious is the line that decreases the probability of the troll
healing itself by 100 in 80% of the cases. The reason to add this is that we
want to limit the troll’s ability. If it could heal itself every turn, the player
would never be able to kill it. There are other ways of limiting the use of an
ability – a mana cost, a cooldown period – but if an ability can only be used
by NPCs, making them not choose it with a certain probability is the easiest
way, implementation-wise, to limit an ability.

3.1.11 Victory!

When the troll is dead, the adventure is over. We need a way to indicate
victory.

Every turn when in the grassy meadow (this is the victory

rule):

if there are no hostile alive persons:

end the game saying "You emerge into the sunlight,

victorious!".

We’ve done it – created a small adventure that can in fact be won, but
only with effort and tactics. (I just managed to beat it, but I only had 1
health left.) Of course, it still needs a lot of polish – especially in the prose
department. The prose for all the monsters needs to be customised, we need
room descriptions and descriptions of the items to actually tell the player
what they are. We also very probably want to indicate how much damage
the monsters have sustained – either by printing something about this in the
status bar, or by indicating it in the prose after a hit has been scored, or in
the descriptions of the monsters printed after an examine command. Also,
we are printing the player’s score to the status bar, but we’re not awarding
him any points!

But none of that is any different from what you would normally have to
do when writing an piece of interactive fiction. The only ATTACK-specific

3.1. WORKED EXAMPLE: A SIMPLE DUNGEON 75

things left to do are creating some test commands, and changing Save and
Undo.

3.1.12 Test commands

If you’re testing a game that uses ATTACK, you will want to do two things
in a special ‘not for release’ section. First, you will turn of randomness, so
that your replays will actually replay. Here’s how to do that:

Section - Testing - Not for release

When play begins, seed the random-number generator with 1081.

or any other number, of course. Then, we add some cheating commands to
get through the fights we do not want to test:

Plunking is an action applying to one thing.

Understand "plunk [something]" as plunking.

Carry out plunking:

say "You plunk [the noun].";

now the health of the noun is -5.

Plonking is an action applying to nothing.

Understand "plonk" as plonking.

Carry out plonking:

say "These fools are no match for you, my lord!";

repeat with X running through all alive persons enclosed by

the location:

if the faction of the player hates the faction of X:

now the health of X is -5.

Plunking kills a single person, plonking kills every enemy in the room you’re
in. You’ll get a programming error when you try to plunk a non-person, but
hey, this stuff is not for release anyway.

3.1.13 Save and Undo

What to do with save and undo? You can do nothing special, you can disable
one or both of them, or you can somehow limit them. Perhaps saving and

76 CHAPTER 3. EXAMPLES AND RECIPES

undoing are only allowed outside fights, or perhaps saving can only be done in
certain places, or at the cost of certain items. These are important decisions,
and you should consider your game design as a whole.

If you use ATTACK only to spice up a few scenes in an otherwise non-
combat, non-tactical game, you’re probably best off leaving Save and Undo
intact. The farther you move to a hard-core tactical game, the nearer you
can go to the Nethack/Diablo paradigm, where undo does not exist, and
saving immediately quits the game. (You cannot stop the player from making
backup copies of his save files, of course, but anyone low enough to stoop to
save scumming isn’t worthy of your game anyway!)

One need trick is provided by the Dice-lock extension written by S John
Ross. You can have that extension lock the dice before every action, with the
result that any player hoping to change the random factors in their rolls by
undoing and trying the action again will be foiled. (But unless you disable
undo completely, or disable it during combat, the player will still be able to
undo their actions and try other actions instead.)

For the present game, I suggest we disallow undoing when a fight is going
on; and allow saving only in the grassy meadow. The latter is easy

Check saving the game (this is the can only save in meadow

rule):

if the location is not the grassy meadow:

say "You can only save outside, where God can see you."

instead.

although it does involve a dubious theology. Messing with undo, however, is
not easy, because there is no undoing action. That’s right. Undo has been
hard-coded into Inform 6, probably for historical reasons. Luckily, we can
use the Conditional Undo extension by Jesse McGrew.

Include Conditional Undo by Jesse McGrew.

Rule for deciding whether to allow undo (this is the no undoing

during a fight rule):

if hate is present:

take no time;

say "You cannot undo during a fight.";

deny undo.

Which concludes this example game. By the way, feel free to use any code
from this example game (which I hereby release into the public domain1), and,

1I’m talking about the example game here, not the ATTACK extension itself.

3.2. FURTHER RECIPES 77

for that matter, any ideas in this manual that strike your fancy. Originality
does not exist. We’re all footnotes to Plato. Or the Jahwist. Or Gygax.

3.2 Further recipes

Here I hope to add further recipes in future releases. Some staples of the
RPG-genre might be useful – limiting the use of special abilities with some-
thing like mana, summoning allies to your side, necromancy, ranged weapons
(which could be useful in rooms with “sub-locations”), and so on.

